Skip to main content
Log in

A Novel Wastewater Treating Material: Cationic Poly Acrylamide/Diatomite Composite Flocculant

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this work, poly(methacrylatoethyl trimethyl ammonium chloride -co-acrylamide)/diatomite composite flocculant was synthesized via in situ polymerization in aqueous solution and applied in waste water treatment. The structure of composite flocculants was characterized by FT-IR, 1HNMR and XRD, TGA and viscometer. Herein, the apparent viscosity of composite flocculants was employed as comparison standard of their performance to evaluate the influence of the reaction parameters, such as monomer feeding ratio, diatomite mass fraction and polymerization temperature, etc. on their flocculation performance. And based on the above investigations, the optimum synthesis condition could be found. By comparing flocculation properties of composite flocculants with that of the conventional cationic flocculant, the dosage of composite flocculant that could make the transmittance of treated waste water exceed 95 % was only 7.5 ppm which was far lower than that of conventional flocculant (60–90 ppm). Meanwhile, the settling time was lower than 5 s which was similarly to that of conventional flocculant. Finally, the conclusion was that the composite flocculant owned higher absorption capacity and larger chain extending space than those of conventional linear flocculant due to the introduction of diatomite as backbone, which could make linear polymer chains free from entanglement and improve the flocculation capacity notably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  1. Ponou J, Ide T, Suzuki A, Tsuji H, Wang LP, Dodbiba G, Fujita T (2014) Water Sci Technol 69:1249–1258

    Article  CAS  PubMed  Google Scholar 

  2. Tripathy T (2006) Vidyasagar University. Midnapore, West-Bengal

    Google Scholar 

  3. Ríos HE, González-Navarrete J, Vargas V, Urzúa MD (2011) Colloid Surf A 384:262–267

    Article  CAS  Google Scholar 

  4. Borkovec M, Papastavrou G (2008) Curr Opin Colloid Interface Sci 13:429–437

    Article  CAS  Google Scholar 

  5. Granados MR, Acién FG, Gómez C, Fernández-Sevilla JM, Grima EM (2012) Bioresour Technol 118:102–110

    Article  CAS  PubMed  Google Scholar 

  6. Chen X, Chen G, Yue PL (2007) Sep Sci Technol 19:65–76

    Google Scholar 

  7. Wang JP, Chen YZ, Ge XW, Yu HQ (2007) Chemosphere 66:1752–1757

    Article  CAS  PubMed  Google Scholar 

  8. Wang LJ, Wang JP, Yuan SJ, Zhang SJ, Yong T, Yu HQ (2009) Chem Eng J 149:118–122

    Article  CAS  Google Scholar 

  9. Ho YC, Norli I, Alkarkhi AFM, Morad N (2010) Bioresour Technol 101:1166–1174

    Article  CAS  PubMed  Google Scholar 

  10. Gao BY, Wang Y, Yue QY (2005) Acta Hydrochim Hydrobiol 33:365–371

    Article  CAS  Google Scholar 

  11. Zou J, Zhu H, Wang F, Sui H, Fan J (2011) Chem Eng J 171:350–356

    Article  CAS  Google Scholar 

  12. Lemons JF (1997) Am Ceram Soc Bull 76:92–98

    CAS  Google Scholar 

  13. Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) Water Res 33:2469–2479

    Article  CAS  Google Scholar 

  14. Al-Degs Y, Khraisheh MAM, Tutunji MF (2001) Water Res 35:3724–3728

    Article  CAS  PubMed  Google Scholar 

  15. Karaman S, Karaipekli A, Sarı A, Biçer A (2011) Sol Energy Mater Sol Cells 95:1647–1653

    Article  CAS  Google Scholar 

  16. Xu B, Li Z (2013) Appl Energy 105:229–237

    Article  CAS  Google Scholar 

  17. Al-Ghouti MA, Khraisheh MAM, Allen SJ, Ahmad MN (2003) J Environ Manag 69:229–238

    Article  CAS  Google Scholar 

  18. Al-Ghouti MA, Al-Degs YS (2011) Chem Eng J 173:115–128

    Article  CAS  Google Scholar 

  19. O’Shea JP, Qiao GG, Franks GV (2010) J Colloid Interface Sci 348:9–23

    Article  CAS  PubMed  Google Scholar 

  20. Sun Z, Zhang Y, Zheng S, Park Y, Frost RL (2013) Thermochim Acta 558:16–21

    Article  CAS  Google Scholar 

  21. Shen WN, Feng LJ, Feng H (2012) Chem J Chin Univ 33:353–360

    CAS  Google Scholar 

  22. Barata-Rodrigues PM, Mays TJ, Moggridge GD (2003) Carbon 41:2231–2246

    Article  CAS  Google Scholar 

  23. Ovenden C, Xiao H (2002) Colloid Surf A 197:225–234

    Article  CAS  Google Scholar 

  24. Ji J, Qiu J, Wai N, Wong FS, Li Y (2009) Water Res 44:1627–1635

    Article  CAS  PubMed  Google Scholar 

  25. Biggs S, Habgood M, Jameson GJ, Yan YD (2000) Chem Eng J 80:13–22

    Article  CAS  Google Scholar 

  26. Gregory J, Barany S (2011) Adv Colloid Interface Sci 169:1–12

    Article  CAS  PubMed  Google Scholar 

  27. Gao BY, Yan W, Yue QY, Wei JC, Qian L (2007) Sep Purif Technol 54:157–163

    Article  CAS  Google Scholar 

  28. Bolto B, Gregory J (2007) Water Res 41:2301–2324

    Article  CAS  PubMed  Google Scholar 

  29. Wei J, Gao B, Yue Q, Wang Y, Li W, Zhu X (2009) Water Res 43:724–732

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support provided by Major Project of Jilin Province (Nos. 20140204083GX, 20160101306JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pixin Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Liu, Y., Wang, Y. et al. A Novel Wastewater Treating Material: Cationic Poly Acrylamide/Diatomite Composite Flocculant. J Polym Environ 26, 3051–3059 (2018). https://doi.org/10.1007/s10924-018-1176-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1176-9

Keywords

Navigation