Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 7, pp 2855–2866 | Cite as

Biodegradability and Thermal Properties of Novel Natural Rubber/Linear Low Density Polyethylene/Thermoplastic Starch Ternary Blends

  • Skulrat Pichaiyut
  • Charoen Nakason
  • Suwaluk Wisunthorn
Original Paper

Abstract

This work aimed to prepare biodegradable thermoplastic elastomers based on NR/LLDPE/TPS ternary simple blends to achieve some exclusive properties, i.e., good biodegradability in terms of water absorption and weight loss after burial, together with reasonable mechanical and thermal properties. A comparative study on biodegradability and other related properties of NR/LLDPE binary and NR/LLDPE/TPS ternary blends was performed. It was found that increasing the TPS proportion decreased storage modulus and complex viscosity. In addition, the size of dispersed TPS domains in the NR/LLDPE co-continuous matrix increased with TPS proportion, while the mechanical properties in terms of 100% moduli, tensile strength, elongation at break, and hardness decreased. This might be attributed to decreased interfacial adhesion with increasing size of TPS domains. Furthermore, increasing the TPS loading in the blend reduced the temperatures for 5 or 50% mass loss (T5 or T50) and the degradation temperature (T d ). However, the biodegradability improved, in terms of increased water absorption and weight loss after burial in soil, with the loading level of TPS.

Keywords

Thermoplastic elastomer Biodegradability Natural rubber Thermoplastic starch Linear low density polyethylene 

Notes

Acknowledgements

The authors gratefully acknowledge financial support by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, Prince of Songkla University, Contract no SIT570565S. The author also would like to acknowledge Dr. Seppo Karilla who contributed to proof this manuscript.

References

  1. 1.
    Sae-Oui P, Sirisinha C, Sa-nguanthammarong P, Thaptong P (2010) Polym Test 29:346CrossRefGoogle Scholar
  2. 2.
    Nakason C, Saiwari S, Kaesaman A (2006) Polym Test 25:423Google Scholar
  3. 3.
    Nakason C, Wannavilai P, Kaesaman A (2006) Polym Test 25:41Google Scholar
  4. 4.
    Thitithammawong A, Nakason C, Sahakaro K, Noordermeer J (2007) Polym Test 26:456CrossRefGoogle Scholar
  5. 5.
    Pechurai W, Nakason C, Sahakaro K (2008) Polym Test 27:631CrossRefGoogle Scholar
  6. 6.
    Pichaiyut S, Nakason C, Kaesaman A, Kiatkamjornwong S (2008) Polym Test 27:580CrossRefGoogle Scholar
  7. 7.
    Nakason C, Jamjinno S, Kaesaman A, Kiatkamjornwong S (2008) Polym Adv Technol 19:85CrossRefGoogle Scholar
  8. 8.
    Dahlan HM, Khairul Zaman MD, Ibrahim A (2002) Polym Test 21:905CrossRefGoogle Scholar
  9. 9.
    Bhowmick AK, Heslop J, White JR (2001) Polym Degrad Stab 74:513CrossRefGoogle Scholar
  10. 10.
    Asaletha R, Kumaran MG, Thomas S (1999) Eur Polym J 35:253CrossRefGoogle Scholar
  11. 11.
    Narathichat M, Kummerlöwe C, Vennemann N, Nakason C (2011) J Appl Polym Sci 121:805CrossRefGoogle Scholar
  12. 12.
    Sharif J, Yunus WMZW., Dahlan KH, Ahmad MH (2006) J Appl Polym Sci 100:353CrossRefGoogle Scholar
  13. 13.
    Mina MF, Ania F, Balta Calleja FJ, Asano T (2004) J Appl Polym Sci 91:205CrossRefGoogle Scholar
  14. 14.
    Nakason C, Pechurai W, Sahakaro K, Kaesaman A (2005) Polym Adv Technol 16:592CrossRefGoogle Scholar
  15. 15.
    Pichayut S, Nakason C, Vennemann N (2012) Iran Polym J 21:65CrossRefGoogle Scholar
  16. 16.
    Kalkornsurapranee E, Nakason C, Kummerlowe C, Vennemann N (2012) J Appl Polym Sci 128:2358CrossRefGoogle Scholar
  17. 17.
    Lai SM, Don TM, Huang YC (2006) J Appl Polym Sci 100:2371CrossRefGoogle Scholar
  18. 18.
    Lu DR, Xiao CM, Xu SJ (2009) Express Polym Lett 3:366CrossRefGoogle Scholar
  19. 19.
    Kahar M, Wahab A, Ismail H, Othman N (2012) J Vinyl Addit Technol 18:65CrossRefGoogle Scholar
  20. 20.
    Wootthikanokkhan J, Wongta N, Sombatsompop N, Kositchaiyong A, Wong-On J, Isarankura na Ayutthaya N, Kaabbuathong N (2012) J Appl Polym Sci 124:1012CrossRefGoogle Scholar
  21. 21.
    Ayana B, Suin S, Khatua BB (2014) Carbohydr Polym 110:430CrossRefGoogle Scholar
  22. 22.
    Zeng J, Jiao L, Li Y, Srinivasan M, Li T, Wang Y (2011) Carbohydr Polym 83:762CrossRefGoogle Scholar
  23. 23.
    Carmona VB, Corrêa AC, Marconcini JM, Mattoso LHC (2014) J Vinyl Addit Technol 23:83Google Scholar
  24. 24.
    Tena-Salcido CS, Rodríguez-González FJ, Méndez-Hernández ML, Contreras-Esquivel JC (2008) Polym Bull 60:677CrossRefGoogle Scholar
  25. 25.
    Sabetzadeh M, Bagheri R, Masoomi M (2015) Carbohydr Polym 119:126CrossRefPubMedGoogle Scholar
  26. 26.
    Da Róz AL, Ferreira AM, Yamaji FM, Carvalho AJF (2012) Carbohydr Polym 90:34CrossRefPubMedGoogle Scholar
  27. 27.
    Kahar AWM, Ismail H, Othman N (2013) J Appl polym sci 128:2479CrossRefGoogle Scholar
  28. 28.
    Kahar AWM, Ismail H, Abdul Hamid A (2016) J Therm Anal Calorim 103:301CrossRefGoogle Scholar
  29. 29.
    Pichaiyut S, Wisunthorn S, Thongpet C, Nakason C (2016) Iran Polym J 25:711CrossRefGoogle Scholar
  30. 30.
    Jantanasakulwong K, Leksawasdi N, Seesuriyachan P, Wongsuriyasak S, Techapun C, Ougizawa T (2016) Eur Polym J 84:292CrossRefGoogle Scholar
  31. 31.
    Kahar AWM, Ismail H, Othman N (2012) J Vinyl Addit Technol 18:65CrossRefGoogle Scholar
  32. 32.
    Sakdapipanich JT, Rojruthai P (2012) In: Molecular structure of natural rubber and its characteristics based on recent evidence, biotechnology—molecular studies and novel applications for improved quality of human life. InTech, Rijeka. http://www.intechopen.com/books/biotechnology-molecular-studies-and-novel-applications-for improvedquality-of-human-life/molecular-structure-of-natural-rubber-and-its-characteristics-based-on-recent-evidence Accessed 17 Apr 2017
  33. 33.
    Mortazavi S, Ghasemi I, Oromiehie A (2014) J Vinyl Addit Technol 20:250CrossRefGoogle Scholar
  34. 34.
    Han CD (1976) In: Rheology in polymer processing. Academic Press, New YorkGoogle Scholar
  35. 35.
    Shan CL, Soares JB, Penlidis A (2003) Polymer 44:177CrossRefGoogle Scholar
  36. 36.
    Xie XL, Liu QX, Li RK, Zhou XP, Zhang QX, Yu ZZ, Mai YW (2004) Polymer 45:6665CrossRefGoogle Scholar
  37. 37.
    Willet JL, Millardt MM, Jasberg BK (1997) Polymer 38:5983CrossRefGoogle Scholar
  38. 38.
    Yokesahachart C, Yoksan R (2011) Carbohydr Polym 83:22CrossRefGoogle Scholar
  39. 39.
    Shanks R, Kong I (2012) In: El-Sonbati A (ed) Thermoplastic starch, thermoplastic elastomers. InTech, Rijeka. http://www.intechopen.com/books/thermoplasticelastomers/thermoplastic-starch. Accessed 16 May 2016
  40. 40.
    Nguyen DM, Do TVV, Grillet AC, Thuc HH, Thuc CNH (2016) Int Biodeterior Biodegrad 115:257CrossRefGoogle Scholar
  41. 41.
    Sabetzadeh M, Bagheri R, Masoomi M (2012) J Appl Polym Sci 126:E63CrossRefGoogle Scholar
  42. 42.
    Abdul Majid R, Ismail H, Mat Taib R (2009) Polym Plast Technol Eng 48:919CrossRefGoogle Scholar
  43. 43.
    Sabetzadeh M, Magheri R, Masoomi M (2015) Carbohydr Polym 119:126CrossRefPubMedGoogle Scholar
  44. 44.
    Pang MM, Pun MY, Ishak ZAM (2013) J Appl Polym Sci 129:3656CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Skulrat Pichaiyut
    • 1
  • Charoen Nakason
    • 1
  • Suwaluk Wisunthorn
    • 1
  1. 1.Faculty of Science and Industrial TechnologyPrince of Songkla UniversitySurat ThaniThailand

Personalised recommendations