Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 7, pp 2813–2824 | Cite as

Citric Acid and Vitamin C as Coupling Agents for the Surface Coating of ZrO2 Nanoparticles and Their Behavior on the Optical, Mechanical, and Thermal Properties of Poly(vinyl alcohol) Nanocomposite Films

  • Shadpour Mallakpour
  • Ahmadreza Nezamzadeh Ezhieh
Original Paper
  • 94 Downloads

Abstract

A series of bio-nanocomposites (BNC)s were fabricated through solution casting method. At first, the surfaces of ZrO2 NPs were functionalized with citric acid and Vitamin C as green modifier agents. Then, PVA as polymer matrix was embedded with different contents (4, 8 and 12 wt%) of modified ZrO2 (m-ZrO2) NPs with the aim of ultrasonic irradiation process. The resulting BNCs were studied by various techniques. Thermal stability of obtained BNCs was enhanced after NPs’ addition to the PVA matrix. Optical activity of these new BNCs makes them potential candidate for UV shielding material. Lastly, the tensile strengths of the BNCs were increased in comparison to the pure PVA.

Keywords

ZrO2 nanoparticles Surface functionalization Poly(vinyl alcohol) Vitamin C (VC) Citric acid (CA) Core–shell morphology 

Notes

Acknowledgements

The Isfahan University of Technology (IUT), Isfahan, I. R. Iran, National Elite Foundation (NEF), Tehran, I. R. Iran, Iran Nanotechnology Initiative Council (INIC), Tehran, I. R. Iran, and Center of Excellence in Sensors and Green Chemistry Research (IUT), Isfahan, I. R. Iran are gratefully acknowledged for the financial support.

References

  1. 1.
    Hemalatha K, Rukmani K, Suriyamurthy N, Nagabhushana B (2014) Synthesis, characterization and optical properties of hybrid PVA–ZnO nanocomposite: a composition dependent study. Mater Res Bull 51:438–446CrossRefGoogle Scholar
  2. 2.
    Maurya A, Chauhan P (2012) Synthesis and characterization of sol–gel derived PVA-titanium dioxide (TiO2) nanocomposite. Polym Bull 68(4):961–972CrossRefGoogle Scholar
  3. 3.
    Roy AS, Gupta S, Sindhu S, Parveen A, Ramamurthy PC (2013) Dielectric properties of novel PVA/ZnO hybrid nanocomposite films. Compos B 47:314–319CrossRefGoogle Scholar
  4. 4.
    Im YM, Oh TH, Cha JW, Seo YH, Hwang JS, Nathanael JA, Han SS, Jang SH (2014) Preparation of poly (vinyl alcohol)/ZrO2 composite nanofibers via co-axial electrospinning with higher ZrO2 particle content. Fiber Polym 15(10):2066–2071CrossRefGoogle Scholar
  5. 5.
    Sugumaran S, Bellan C (2014) Transparent nano composite PVA–TiO2 and PMMA–TiO2 thin films: optical and dielectric properties. Optik Int J Light Electron Opt 125(18):5128–5133CrossRefGoogle Scholar
  6. 6.
    Rozra J, Saini I, Sharma A, Chandak N, Aggarwal S, Dhiman R, Sharma PK (2012) Cu nanoparticles induced structural, optical and electrical modification in PVA. Mater Chem Phys 134(2):1121–1126CrossRefGoogle Scholar
  7. 7.
    Sapalidis AA, Katsaros FK, Kanellopoulos NK (2011) PVA/montmorillonite nanocomposites: development and properties. In: Nanocomposites and polymers with analytical methods. INTECH, Rijeka, pp 29–50Google Scholar
  8. 8.
    Mallakpour S, Barati A (2011) Efficient preparation of hybrid nanocomposite coatings based on poly (vinyl alcohol) and silane coupling agent modified TiO2 nanoparticles. Prog Org Coat 71(4):391–398CrossRefGoogle Scholar
  9. 9.
    Peng Z, Kong LX (2007) A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polym Degrad Stab 92(6):1061–1071CrossRefGoogle Scholar
  10. 10.
    Soundararajah Q, Karunaratne B, Rajapakse R (2009) Mechanical properties of poly (vinyl alcohol) montmorillonite nanocomposites. JCM 44(3):303–311Google Scholar
  11. 11.
    Radosavljević A, Božanić D, Bibić N, Mitrić M, Kačarević-Popović Z, Nedeljković J (2012) Characterization of poly (vinyl alcohol)/gold nanocomposites obtained by in situ gamma-irradiation method. J Appl Polym Sci 125(2):1244–1251CrossRefGoogle Scholar
  12. 12.
    Jiang L, Shen XP, Wu JL, Shen KC (2010) Preparation and characterization of graphene/poly (vinyl alcohol) nanocomposites. J Appl Polym Sci 118(1):275–279CrossRefGoogle Scholar
  13. 13.
    Wang Y, Wang Z, Ma P, Bai H, Dong W, Xie Y, Chen M (2015) Strong nanocomposite reinforcement effects in poly (vinyl alcohol) with melanin nanoparticles. RSC Adv 5(89):72691–72698CrossRefGoogle Scholar
  14. 14.
    Wang Y, Li T, Ma P, Bai H, Xie Y, Chen M, Dong W (2016) Simultaneous enhancements of UV-shielding properties and photostability of poly (vinyl alcohol) via incorporation of Sepia eumelanin. ACS Sustain Chem Eng 4(4):2252–2258CrossRefGoogle Scholar
  15. 15.
    Dong W, Wang Y, Huang C, Xiang S, Ma P, Ni Z, Chen M (2014) Enhanced thermal stability of poly (vinyl alcohol) in presence of melanin. J Therm Anal Calorim 115(2):1661–1668CrossRefGoogle Scholar
  16. 16.
    Mallakpour S, Abdolmaleki A, Borandeh S (2015) Surface functionalization of GO, preparation and characterization of PVA/TRIS-GO nanocomposites. Polymer 81:140–150CrossRefGoogle Scholar
  17. 17.
    Fujimori K, Gopiraman M, Kim H-K, Kim B-S, Kim I-S (2013) Mechanical and electromagnetic interference shielding properties of poly (vinyl alcohol)/graphene and poly (vinyl alcohol)/multi-walled carbon nanotube composite nanofiber mats and the effect of Cu top-layer coating. J Nanosci Nanotechnol 13(3):1759–1764CrossRefGoogle Scholar
  18. 18.
    Anandan K, Rajendran V (2013) A low-temperature synthesis and characterization of tetragonal-ZrO2 nanoparticles via simple hydrothermal process.Google Scholar
  19. 19.
    Kumari L, Li W, Wang D (2008) Monoclinic zirconium oxide nanostructures synthesized by a hydrothermal route. Nanotechnology 19(19):195602CrossRefGoogle Scholar
  20. 20.
    Krishnamoorthy K, Natarajan S, Kim S-J, Kadarkaraithangam J (2011) Enhancement in thermal and tensile properties of ZrO2/poly (vinyl alcohol) nanocomposite film. Mater Express 1(4):329–335CrossRefGoogle Scholar
  21. 21.
    Mallakpour S, Behranvand V (2016) Chapter 24 grafted nano-ZnO, TiO2 by biosafe coupling agents and their applications for the green polymer nanocomposites fabrication. In: Inamuddin (ed) Green polymer composites technology: properties and applications. CRC Press, Taylor & Francis Group, Boca Raton, pp 381–396.  https://doi.org/10.1201/9781315371184-25
  22. 22.
    Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog Poly Sci 38(8):1232–1261CrossRefGoogle Scholar
  23. 23.
    Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415CrossRefGoogle Scholar
  24. 24.
    Mallakpour S, Madani M (2015) A review of current coupling agents for modification of metal oxide nanoparticles. Prog Org Coat 86:194–207CrossRefGoogle Scholar
  25. 25.
    Mallakpour S, Shafiee E (2018) A simple method for the sonochemical synthesis of PVA/ZrO2-vitamin B1 nanocomposites: morphology, mechanical, thermal and wettability investigations. Ultrason Sonochem 40:881–889CrossRefGoogle Scholar
  26. 26.
    Mallakpour S, Dinari M, Neamani S (2015) A facile and green method for the production of novel and potentially biocompatible poly (amide-imide)/ZrO2–poly (vinyl alcohol) nanocomposites containing trimellitylimido-l-leucine linkages. Prog Org Coat 86:11–17CrossRefGoogle Scholar
  27. 27.
    Mallakpour S, Hajjari Z (2017) Ultrasound-assisted surface treatment of ZrO2 with BSA and incorporating in PVC to improve the properties of the obtained nanocomposites: fabrication and characterization. Ultrason Sonochem 41:350–360CrossRefGoogle Scholar
  28. 28.
    Çınar S, Akinc M (2014) Ascorbic acid as a dispersant for concentrated alumina nanopowder suspensions. J Eur Ceram Soc 34(8):1997–2004CrossRefGoogle Scholar
  29. 29.
    Mallakpour S, Derakhshan F (2014) Opportunities and challenges in the use of TiO2 nanoparticles modified with citric acid to synthesize advanced nanocomposites based on poly (amide-imide) containing N, N′-(pyromellitoyl)-bis-L-leucine segments. Int J Polym Anal Charact 19(8):750–764CrossRefGoogle Scholar
  30. 30.
    Takassi MA, Zadehnazari A, Farhadi A, Mallakpour S (2015) Highly stable polyimide composite films based on 1, 2, 4-triazole ring reinforced with multi-walled carbon nanotubes: Study on thermal, mechanical, and morphological properties. Prog Org Coat 80:142–149CrossRefGoogle Scholar
  31. 31.
    Mallakpour S, Nezamzadeh Ezhieh A (2015) A simple and environmentally friendly method for surface modification of ZrO2 nanoparticles by biosafe citric acid as well as ascorbic acid (vitamin C) and its application for the preparation of poly (vinyl chloride) nanocomposite films. Polym Compos 38(8):1756–1765CrossRefGoogle Scholar
  32. 32.
    Zinatloo-Ajabshir S, Salavati-Niasari M (2014) Synthesis of pure nanocrystalline ZrO2 via a simple sonochemical-assisted route. J Ind Eng Chem 20(5):3313–3319CrossRefGoogle Scholar
  33. 33.
    Heshmatpour F, Aghakhanpour RB (2011) Synthesis and characterization of nanocrystalline zirconia powder by simple sol–gel method with glucose and fructose as organic additives. Powder Technol 205(1):193–200CrossRefGoogle Scholar
  34. 34.
    Sreeja V, Jayaprabha K, Joy P (2014) Water-dispersible ascorbic-acid-coated magnetite nanoparticles for contrast enhancement in MRI. Appl Nanosci 5:1–7Google Scholar
  35. 35.
    Cheraghipour E, Javadpour S, Mehdizadeh AR (2012) Citrate capped superparamagnetic iron oxide nanoparticles used for hyperthermia therapy. J. Biomed Sci Eng 5:715–719CrossRefGoogle Scholar
  36. 36.
    Reyes-Acosta M, Torres-Huerta A, Domínguez-Crespo M, Flores-Vela A, Dorantes-Rosales H, Ramírez-Meneses E (2014) Influence of ZrO2 nanoparticles and thermal treatment on the properties of PMMA/ZrO2 hybrid coatings. J Alloys Compd 643:150–158CrossRefGoogle Scholar
  37. 37.
    Qian X-F, Yin J, Huang J-C, Yang Y-F, Guo X-X, Zhu Z-K (2001) The preparation and characterization of PVA/Ag 2 S nanocomposite. Mater Chem Phys 68(1):95–97CrossRefGoogle Scholar
  38. 38.
    Mallakpour S, Zeraatpisheh F (2014) Novel flame retardant zirconia-reinforced nanocomposites containing chlorinated poly (amide-imide): synthesis and morphology probe. J Exp Nanosci 9(10):1035–1050CrossRefGoogle Scholar
  39. 39.
    Cao H, Qiu X, Luo B, Liang Y, Zhang Y, Tan R, Zhao M, Zhu Q (2004) Synthesis and room-temperature ultraviolet photoluminescence properties of zirconia nanowires. Adv Funct Mater 14(3):243–246CrossRefGoogle Scholar
  40. 40.
    Geethalakshmi K, Prabhakaran T, Hemalatha J (2012) Dielectric studies on nano zirconium dioxide synthesized through co-precipitation process. World Acad Sci Eng Technol 64:179–182Google Scholar
  41. 41.
    Asiltürk M, Burunkaya E, Sayılkan F, Kiraz N, Arpaç E (2011) Structural and optical properties of thin films prepared from surface modified ZrO2. J Non-Cryst Solids 357(1):206–210CrossRefGoogle Scholar
  42. 42.
    Mallakpour S, Dinari M (2013) Enhancement in thermal properties of poly (vinyl alcohol) nanocomposites reinforced with Al2O3 nanoparticles. J Reinf Plast Compos 32(4):217–224CrossRefGoogle Scholar
  43. 43.
    Tantis I, Psarras G, Tasis D (2012) Functionalized graphene–poly (vinyl alcohol) nanocomposites: physical and dielectric properties. Express Polym Lett 6(4):283–292CrossRefGoogle Scholar
  44. 44.
    Mallakpour S, Zadehnazari A (2014) Thermal and mechanical stabilities of composite films from thiadiazol bearing poly (amide-thioester-imide) and multiwall carbon nanotubes by solution compounding. Polym Bull 71(1):207–225CrossRefGoogle Scholar
  45. 45.
    Tanasă F, Zănoagă M, Darie R (2014) Evaluation of stress-strain properties of some new polymer-clay nanocomposites for aerospace and defence applications. In: International conference of scientific paper. Brasov, 22–24 May: 1-694Google Scholar
  46. 46.
    Ramezani Kakroodi A, Cheng S, Sain M, Asiri A (2014) Mechanical, thermal, and morphological properties of nanocomposites based on polyvinyl alcohol and cellulose nanofiber from Aloe vera rind. J Nanomater 2014:1–7CrossRefGoogle Scholar
  47. 47.
    Mahdavi H, Mirzadeh H, Zohuriaan-Mehr MJ, Talebnezhad F (2013) Poly (vinyl alcohol)/chitosan/clay nano-composite films. J Am Sci 9:203–214Google Scholar
  48. 48.
    Mallakpour S, Madani M (2015) Effects of glucose-functionalized multiwalled carbon nanotubes on the structural, mechanical, and thermal properties of chitosan nanocomposite films. J Appl Polym Sci.  https://doi.org/10.1002/app.42022 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Shadpour Mallakpour
    • 1
    • 2
  • Ahmadreza Nezamzadeh Ezhieh
    • 1
  1. 1.Organic Polymer Chemistry Research Laboratory, Department of ChemistryIsfahan University of TechnologyIsfahanIslamic Republic of Iran
  2. 2.Research Institute for Nanotechnology and Advanced MaterialsIsfahan University of TechnologyIsfahanIslamic Republic of Iran

Personalised recommendations