Journal of Polymers and the Environment

, Volume 26, Issue 7, pp 2825–2844 | Cite as

Reuse of Selected Lignocellulosic and Processed Biomasses as Sustainable Sources for the Fabrication of Nanocellulose via Ni(II)-Catalyzed Hydrolysis Approach: A Comparative Study

  • Mazlita Yahya
  • You Wei Chen
  • Hwei Voon LeeEmail author
  • Wan Hasamudin Wan Hassan
Original Paper


This study investigates for the first time the feasibility of isolating nanocellulose from several selected feedstocks via a novel Ni(II)-hydrolysis process, including lignocellulosic biomasses (oil palm trunk, banana peel and coconut husk) and processed biomasses (newspaper, tissue paper and cotton linter), with an obtained gravimetric yield ranging from 59.6 to 86.2%. The isolation of nanocellulose products from these selected feedstocks was verified by the successive removal of most of their non-cellulosic components (lignin and hemicellulose) and cellulose amorphous regions, the increase in the crystallinity index and the nanoscale of the individual crystals. Most importantly, the resultant nanocellulose products rendered better thermal stability than that of corresponding original sources, which are highly potential to be utilized as the new renewable sources of reinforcement materials with potential applications in bio-nanocomposites and thermoplastics. Therefore, this work proves the viability of direct production of nanocellulose from a variety of cellulosic sources by using Ni(II)-based transition metal salt catalyst. The results suggested that the concept of waste to wealth could be well executed from the obtained nanocellulose, which are greatly potential for various industrial applications.


Lignocellulosic biomass Transition metal salt catalyst Cellulose nanocrystals Processed waste Thermal characterization 



The authors are grateful for the financial support from SATU Joint Research Scheme (ST015-2017) and University of Malaya, Postgraduate Research Grant Scheme PPP (PG063-2015A, PG079-2014B). We are also acknowledged for cordial support from Malaysian Palm Oil Board (MPOB). The authors would like to gratefully acknowledge the expert guidance and support from late Professor Sharifah Bee Abd Hamid throughout the study.


  1. 1.
    Flauzino Neto WP et al (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue – Soy hulls. Ind Crops Prod 42:480–488CrossRefGoogle Scholar
  2. 2.
    Klemm D et al (2011) Nanocellulose: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRefGoogle Scholar
  3. 3.
    Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979CrossRefGoogle Scholar
  4. 4.
    Adewuyi YG, Deshmane VG (2015) Intensification of enzymatic hydrolysis of cellulose using high-frequency ultrasound: an investigation of the effects of process parameters on glucose yield. Energy Fuels 29(8):4998–5006CrossRefGoogle Scholar
  5. 5.
    Hamid SBA et al (2016) Catalytic isolation and physicochemical properties of nanocrystalline cellulose (NCC) using HCl-FeCl3 system combined with ultrasonication. BioResources 11(2):3840–3855Google Scholar
  6. 6.
    Fortunati E et al (2012) Extraction of cellulose nanocrystals from Phormium tenax fibres. J Polym Environ 21(2):319–328CrossRefGoogle Scholar
  7. 7.
    Tan XY, Abd Hamid SB, Lai CW (2015) Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass Bioenergy 81:584–591CrossRefGoogle Scholar
  8. 8.
    Khawas P, Deka SC (2016) Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohydr Polym 137:608–616CrossRefPubMedGoogle Scholar
  9. 9.
    Guo J et al (2016) Effects of ultrasonic treatment during acid hydrolysis on the yield, particle size and structure of cellulose nanocrystals. Carbohydr Polym 135:248–255CrossRefPubMedGoogle Scholar
  10. 10.
    Silvério HA et al (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44:427–436CrossRefGoogle Scholar
  11. 11.
    Cherian BM et al (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym 86(4):1790–1798CrossRefGoogle Scholar
  12. 12.
    Tan BK et al (2015) Biodegradable mulches based on poly (vinyl alcohol), kenaf fiber, and urea. BioResources 10(3):5532–5543CrossRefGoogle Scholar
  13. 13.
    Shuit SH et al (2009) Oil palm biomass as a sustainable energy source: a Malaysian case study. Energy 34(9):1225–1235CrossRefGoogle Scholar
  14. 14.
    Trache D et al (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786CrossRefPubMedGoogle Scholar
  15. 15.
    Bettaieb F et al (2015) Preparation and characterization of new cellulose nanocrystals from marine biomass Posidoniaoceanica. Ind Crops Prod 72:175–182CrossRefGoogle Scholar
  16. 16.
    Chen YW et al (2016) Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohydr Polym 151:1210–1219CrossRefPubMedGoogle Scholar
  17. 17.
    Deepa B et al (2015) Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22(2):1075–1090CrossRefGoogle Scholar
  18. 18.
    Lee H, Hamid S, Zain S (2014) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. The Scientific World Journal 2014 Google Scholar
  19. 19.
    Mora-Pale M et al (2011) Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol Bioeng 108(6):1229–1245CrossRefPubMedGoogle Scholar
  20. 20.
    Sofla MRK et al (2016) A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Adv Nat Sci: Nanosci Nanotechnol 7(3):035004Google Scholar
  21. 21.
    Man Z et al (2011) Preparation of cellulose nanocrystals using an ionic liquid. J Polym Environ 19(3):726–731CrossRefGoogle Scholar
  22. 22.
    Chen L et al (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18(13):3835–3843CrossRefGoogle Scholar
  23. 23.
    Moriana R, Vilaplana F, Ek M (2016) Cellulose nanocrystals from forest residues as reinforcing agents for composites: a study from macro- to nano-dimensions. Carbohydr Polym 139:139–149CrossRefPubMedGoogle Scholar
  24. 24.
    Jonoobi M et al (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969CrossRefGoogle Scholar
  25. 25.
    Lamaming J et al (2015) Cellulose nanocrystals isolated from oil palm trunk. Carbohydr Polym 127:202–208CrossRefPubMedGoogle Scholar
  26. 26.
    Wobiwo FA et al (2017) Comparative biochemical methane potential of some varieties of residual banana biomass and renewable energy potential. Biomass Convers Biorefin 7(2):167–177CrossRefGoogle Scholar
  27. 27.
    Cabral MMS et al (2016) Bioethanol production from coconut husk fiber. Ciênc Rural 46(10):1872–1877CrossRefGoogle Scholar
  28. 28.
    Subhedar PB, Babu NR, Gogate PR (2015) Intensification of enzymatic hydrolysis of waste newspaper using ultrasound for fermentable sugar production. Ultrason Sonochem 22:326–332CrossRefPubMedGoogle Scholar
  29. 29.
    Campano C et al (2017) Direct production of cellulose nanocrystals from old newspapers and recycled newsprint. Carbohydr Polym 173:489–496CrossRefPubMedGoogle Scholar
  30. 30.
    Hubbe MA et al (2013) Enhanced absorbent products incorporating cellulose and its derivatives: a review. BioResources 8(4):6556–6629Google Scholar
  31. 31.
    Morais JP et al (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr Polym 91(1):229–235CrossRefPubMedGoogle Scholar
  32. 32.
    Nepomuceno NC et al (2017) Extraction and characterization of cellulose nanowhiskers from Mandacaru (Cereus jamacaru DC.) spines. Cellulose 24(1):119–129CrossRefGoogle Scholar
  33. 33.
    Cui S et al (2016) Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis. Ind Crops Prod 83:346–352CrossRefGoogle Scholar
  34. 34.
    Naduparambath S, Purushothaman E (2016) Sago seed shell: determination of the composition and isolation of microcrystalline cellulose (MCC). Cellulose 23(3):1803–1812CrossRefGoogle Scholar
  35. 35.
    Park S et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):1CrossRefGoogle Scholar
  36. 36.
    Correa AC et al (2010) Cellulose nanofibers from curaua fibers. Cellulose 17(6):1183–1192CrossRefGoogle Scholar
  37. 37.
    Pickering KL et al (2007) Optimising industrial hemp fibre for composites. Compos Part A: Appl Sci Manuf 38(2):461–468CrossRefGoogle Scholar
  38. 38.
    Yahya MB, Lee HV, Hamid SBA (2015) Preparation of nanocellulose via transition metal salt-catalyzed hydrolysis pathway. BioResources 10(4):7627–7639CrossRefGoogle Scholar
  39. 39.
    Chen YW, Lee HV, Abd Hamid SB (2016) Preparation and characterization of cellulose crystallites via Fe(III)-, Co(II)-and Ni(II)-assisted dilute sulfuric acid catalyzed hydrolysis process. J Nano Res 41:96–109CrossRefGoogle Scholar
  40. 40.
    Rosa MF et al (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81(1):83–92CrossRefGoogle Scholar
  41. 41.
    Son HN, Seo YB (2015) Physical and bio-composite properties of nanocrystalline cellulose from wood, cotton linters, cattail, and red algae. Cellulose 22(3):1789–1798CrossRefGoogle Scholar
  42. 42.
    Sung SH, Chang Y, Han J (2017) Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin. Carbohydr Polym 169:495–503CrossRefPubMedGoogle Scholar
  43. 43.
    Maiti S et al (2013) Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydr Polym 98(1):562–567CrossRefPubMedGoogle Scholar
  44. 44.
    Yahya M et al (2015) Chemical conversion of palm-based lignocellulosic biomass to nano-cellulose. Polym Res J 9(4):385Google Scholar
  45. 45.
    Pacaphol K, Aht-Ong D (2017) Preparation of hemp nanofibers from agricultural waste by mechanical defibrillation in water. J Clean Prod 142:1283–1295CrossRefGoogle Scholar
  46. 46.
    Brígida AIS et al (2010) Effect of chemical treatments on properties of green coconut fiber. Carbohydr Polym 79(4):832–838CrossRefGoogle Scholar
  47. 47.
    Tibolla H, Pelissari FM, Menegalli FC (2014) Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT - Food Sci Technol 59(2):1311–1318CrossRefGoogle Scholar
  48. 48.
    Chen W et al (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18(2):433–442CrossRefGoogle Scholar
  49. 49.
    Chen YW, Lee HV, Abd Hamid SB (2017) Facile production of nanostructured cellulose from Elaeis guineensis empty fruit bunch via one pot oxidative-hydrolysis isolation approach. Carbohydr Polym 157:1511–1524CrossRefPubMedGoogle Scholar
  50. 50.
    Mondragon G et al (2014) A common strategy to extracting cellulose nanoentities from different plants. Ind Crops Prod 55:140–148CrossRefGoogle Scholar
  51. 51.
    Jahan MS et al (2011) Jute as raw material for the preparation of microcrystalline cellulose. Cellulose 18(2):451–459CrossRefGoogle Scholar
  52. 52.
    Guo X et al (2015) Production of recycled cellulose fibers from waste paper via ultrasonic wave processing. J Appl Polym Sci 132(19):41962Google Scholar
  53. 53.
    Diop CIK, Lavoie J-M (2016) Isolation of nanocrystalline cellulose: a technological route for valorizing recycled tetra pak aseptic multilayered food packaging wastes. Waste Biomass Valorization 8:1–16Google Scholar
  54. 54.
    Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86(3):1291–1299CrossRefGoogle Scholar
  55. 55.
    Beltramino F et al (2016) Optimization of sulfuric acid hydrolysis conditions for preparation of nanocrystalline cellulose from enzymatically pretreated fibers. Cellulose 23(3):1777–1789CrossRefGoogle Scholar
  56. 56.
    Chen YW, Lee HV, Hamid SBA (2016) A response surface methodology study: effects of trivalent Cr3+ metal ion-catalyzed hydrolysis on nanocellulose crystallinity and yield. BioResources 11(2):4645–4662Google Scholar
  57. 57.
    Chen YW, Lee HV, Hamid SBA (2016) Preparation of nanostructured cellulose via Cr(III)- and Mn(II)-transition metal salt catalyzed acid hydrolysis approach. BioResources 11(3):7224–7241Google Scholar
  58. 58.
    Chen YW et al (2017) Easy fabrication of highly thermal-stable cellulose nanocrystals using Cr(NO3)3 catalytic hydrolysis system: a feasibility study from macro- to nano-dimensions. Materials 10(1):42CrossRefPubMedCentralGoogle Scholar
  59. 59.
    Al-Dulaimi AA, Wanrosli WD (2017) Isolation and characterization of nanocrystalline cellulose from totally chlorine free oil palm empty fruit bunch pulp. J Polym Environ 25(2):192–202Google Scholar
  60. 60.
    Yang H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788CrossRefGoogle Scholar
  61. 61.
    Chandra J, George N, Narayanankutty SK (2016) Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr Polym 142:158–166CrossRefGoogle Scholar
  62. 62.
    Chirayil CJ et al (2014) Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Ind Crops Prod 59:27–34CrossRefGoogle Scholar
  63. 63.
    Zaini LH (2013) Isolation and characterization of cellulose whiskers from kenaf (Hibiscus cannabinus L.) bast fibers. J Biomater Nanobiotechnol 04(01):37–44CrossRefGoogle Scholar
  64. 64.
    Goh KY et al (2016) Individualization of microfibrillated celluloses from oil palm empty fruit bunch: comparative studies between acid hydrolysis and ammonium persulfate oxidation. Cellulose 23(1):379–390CrossRefGoogle Scholar
  65. 65.
    Yu H et al (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1(12):3938–3944CrossRefGoogle Scholar
  66. 66.
    Roman M, Winter W (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677CrossRefPubMedGoogle Scholar
  67. 67.
    Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37(1):93–99CrossRefGoogle Scholar
  68. 68.
    Chen YW, Lee HV (2018) Revalorization of selected municipal solid wastes as new precursors of “green” nanocellulose via a novel one-pot isolation system: a source perspective. Int J Biol Macromol 107:78–92Google Scholar
  69. 69.
    Chen YW, Lee HV, Abd SB, Hamid (2017) Investigation of optimal conditions for production of highly crystalline nanocellulose with increased yield via novel Cr(III)-catalyzed hydrolysis: response surface methodology. Carbohydr Polym 178:(Supplement C):57–68CrossRefPubMedGoogle Scholar
  70. 70.
    Alila S et al (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crops Prod 41:250–259CrossRefGoogle Scholar
  71. 71.
    Han J et al (2013) Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromol 14(5):1529–1540CrossRefGoogle Scholar
  72. 72.
    Liu C et al (2016) Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohydr Polym 151:716–724CrossRefPubMedGoogle Scholar
  73. 73.
    Dash R, Li Y, Ragauskas AJ (2012) Cellulose nanowhisker foams by freeze casting. Carbohydr Polym 88(2):789–792CrossRefGoogle Scholar
  74. 74.
    Travalini A et al (2017) Extraction and characterization of nanocrystalline cellulose from cassava bagasse. J Polym Environ 1–9Google Scholar
  75. 75.
    Wang Z et al (2017) Reuse of waste cotton cloth for the extraction of cellulose nanocrystals. Carbohydr Polym 157:945–952CrossRefPubMedGoogle Scholar
  76. 76.
    Sun X et al (2015) Comparison of highly transparent all-cellulose nanopaper prepared using sulfuric acid and TEMPO-mediated oxidation methods. Cellulose 22(2):1123–1133CrossRefGoogle Scholar
  77. 77.
    Arrieta MP et al (2014) PLA-PHB/cellulose based films: mechanical, barrier and disintegration properties. Polym Degrad Stab 107:139–149CrossRefGoogle Scholar
  78. 78.
    Chapple S, Anandjiwala R (2010) Flammability of natural fiber-reinforced composites and strategies for fire retardancy: a review. J Thermoplast Compos Mater 23(6):871–893CrossRefGoogle Scholar
  79. 79.
    Cheng M et al (2017) Efficient extraction of cellulose nanocrystals through hydrochloric acid hydrolysis catalyzed by inorganic chlorides under hydrothermal conditions. ACS Sustain Chem Eng 5(6):4656–4664CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Mazlita Yahya
    • 1
  • You Wei Chen
    • 1
  • Hwei Voon Lee
    • 1
    Email author
  • Wan Hasamudin Wan Hassan
    • 2
  1. 1.Nanotechnology & Catalysis Research Centre (NANOCAT), Institute of Postgraduate StudiesUniversity of MalayaKuala LumpurMalaysia
  2. 2.Malaysian Palm Oil Board (MPOB)Persiaran Institusi Bandar Baru BangiKajangMalaysia

Personalised recommendations