Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 7, pp 2748–2757 | Cite as

Influence of Glutaraldehyde Crosslinking and Alkaline Post-treatment on the Properties of Chitosan-Based Films

  • Julia Menegotto Frick
  • Alan Ambrosi
  • Liliane Damaris Pollo
  • Isabel Cristina Tessaro
Original Paper

Abstract

Depending on the modifications proposed, chitosan films present different characteristics, for instance correlated to hydrophilicity, chemical and mechanical properties. The aim of this study was to evaluate the influence of glutaraldehyde crosslinking and an alkaline post-treatment with NaOH on the characteristics of chitosan based films. Films were obtained by casting and characterized by thickness, swelling degree, mechanical and thermal properties and chemical structure. The water vapor permeability (WVP) was also evaluated for food packaging application. It was observed that crosslinking and NaOH post-treatment have great influence on the chitosan films characteristics. Crosslinking reduced the swelling degree of films and increased its fragility, whereas NaOH treatment also reduces the swelling degree and changes mechanical properties, acting in the same way as a crosslinker. The WVP analyses showed that the basic treatment could substitute the glutaraldehyde crosslinking for film water stability, without greatly compromising the barrier properties of chitosan based films.

Keywords

Chitosan Crosslinking NaOH treatment Biodegradable Films 

Notes

Acknowledgements

The authors acknowledge the financial support received from the National Council for Scientific and Technological Development (CNPq), the Coordination for the Improvement of Higher Level Personnel (CAPES), and the Research Support Foundation of the State of Rio Grande do Sul (FAPERGS) of Brazil. In particular, to thank CAPES CSF-PVE’s Project, process number 88881.068177/2014-01.

References

  1. 1.
    Chen F, Gällstedt M, Olsson RT et al (2015) Unusual effects of monocarboxylic acids on the structure and on the transport and mechanical properties of chitosan films. Carbohydr Polym 132:419–429.  https://doi.org/10.1016/j.carbpol.2015.06.050 CrossRefPubMedGoogle Scholar
  2. 2.
    Mourya VK, Inamdar NN (2008) Chitosan-modifications and applications: opportunities galore. React Funct Polym 68:1013–1051.  https://doi.org/10.1016/j.reactfunctpolym.2008.03.002 CrossRefGoogle Scholar
  3. 3.
    Fernandez-Saiz P, Lagaron JM, Ocio MJ (2009) Optimization of the biocide properties of chitosan for its application in the design of active films of interest in the food area. Food Hydrocoll 23:913–921.  https://doi.org/10.1016/j.foodhyd.2008.06.001 CrossRefGoogle Scholar
  4. 4.
    Leceta I, Guerrero P, Ibarburu I et al (2013) Characterization and antimicrobial analysis of chitosan-based films. J Food Eng 116:889–899.  https://doi.org/10.1016/j.jfoodeng.2013.01.022 CrossRefGoogle Scholar
  5. 5.
    Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678.  https://doi.org/10.1016/j.progpolymsci.2009.04.001 CrossRefGoogle Scholar
  6. 6.
    Sencadas V, Correia DM, Ribeiro C et al (2012) Physical-chemical properties of cross-linked chitosan electrospun fiber mats. Polym Test 31:1062–1069.  https://doi.org/10.1016/j.polymertesting.2012.07.010 CrossRefGoogle Scholar
  7. 7.
    Dutta PK, Dutta J, Tripathi VS (2004) Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res (India) 63:20–31.  https://doi.org/10.1002/chin.200727270 CrossRefGoogle Scholar
  8. 8.
    Ravi Kumar MN (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27.  https://doi.org/10.1016/S1381-5148(00)00038-9 CrossRefGoogle Scholar
  9. 9.
    Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632.  https://doi.org/10.1016/j.progpolymsci.2006.06.001 CrossRefGoogle Scholar
  10. 10.
    Barbosa MA, Gonçalves IC, Moreno PMD et al (2017) Chitosan. In: Comprehensive Biomaterials II. Elsevier, Amsterdam, pp 279–305CrossRefGoogle Scholar
  11. 11.
    De Oliveira AM, Franco TT, Oliveira De Junior EN (2014) Physicochemical characterization of thermally treated chitosans and chitosans obtained by alkaline deacetylation. Int J Polym Sci.  https://doi.org/10.1155/2014/853572 CrossRefGoogle Scholar
  12. 12.
    Neto CGT, Dantas TNC, Fonseca JLC, Pereira MR (2005) Permeability studies in chitosan membranes. Effects of crosslinking and poly(ethylene oxide) addition. Carbohydr Res 340:2630–2636.  https://doi.org/10.1016/j.carres.2005.09.011 CrossRefPubMedGoogle Scholar
  13. 13.
    Gonsalves ADA, Araújo CRM, Soares NA et al (2011) Diferentes estratégias para a reticulação de quitosana. Quim Nova 34:1215–1223.  https://doi.org/10.1590/S0100-40422011000700021 CrossRefGoogle Scholar
  14. 14.
    Poon L, Wilson LD, Headley JV (2014) Chitosan-glutaraldehyde copolymers and their sorption properties. Carbohydr Polym 109:92–101.  https://doi.org/10.1016/j.carbpol.2014.02.086 CrossRefPubMedGoogle Scholar
  15. 15.
    Beppu MM, Vieira RS, Aimoli CG, Santana CC (2007) Crosslinking of chitosan membranes using glutaraldehyde: effect on ion permeability and water absorption. J Memb Sci 301:126–130.  https://doi.org/10.1016/j.memsci.2007.06.015 CrossRefGoogle Scholar
  16. 16.
    Marques JS, Chagas JAOD., Fonseca JLC, Pereira MR (2016) Comparing homogeneous and heterogeneous routes for ionic crosslinking of chitosan membranes. React Funct Polym 103:156–161.  https://doi.org/10.1016/j.reactfunctpolym.2016.04.014 CrossRefGoogle Scholar
  17. 17.
    Kahya N, Kaygusuz H, Erim FB (2017) Aqueous removal of sodium dodecyl benzene sulfonate (SDBS) by crosslinked chitosan films. J Polym Environ 0:1–7.  https://doi.org/10.1007/s10924-017-1113-3 CrossRefGoogle Scholar
  18. 18.
    Liu YL, Su YH, Lai JY (2004) In situ crosslinking of chitosan and formation of chitosan-silica hybrid membranes with using γ-glycidoxypropyltrimethoxysilane as a crosslinking agent. Polymer 45:6831–6837.  https://doi.org/10.1016/j.polymer.2004.08.006 CrossRefGoogle Scholar
  19. 19.
    Zhang W, Yu Z, Qian Q et al (2010) Improving the pervaporation performance of the glutaraldehyde crosslinked chitosan membrane by simultaneously changing its surface and bulk structure. J Memb Sci 348:213–223.  https://doi.org/10.1016/j.memsci.2009.11.003 CrossRefGoogle Scholar
  20. 20.
    Suyatma NE, Copinet A, Legin-Copinet E et al (2011) Different pla grafting techniques on chitosan. J Polym Environ 19:166–171.  https://doi.org/10.1007/s10924-010-0269-x CrossRefGoogle Scholar
  21. 21.
    Li H, Gao X, Wang Y et al (2013) Comparison of chitosan/starch composite film properties before and after cross-linking. Int J Biol Macromol 52:275–279.  https://doi.org/10.1016/j.ijbiomac.2012.10.016 CrossRefPubMedGoogle Scholar
  22. 22.
    Fernández-de Castro L, Mengíbar M, Sánchez Á et al (2016) Films of chitosan and chitosan-oligosaccharide neutralized and thermally treated: effects on its antibacterial and other activities. LWT—Food Sci Technol 73:368–374.  https://doi.org/10.1016/j.lwt.2016.06.038 CrossRefGoogle Scholar
  23. 23.
    Silva RM, Silva GA, Coutinho OP et al (2004) Preparation and characterisation in simulated body conditions of glutaraldehyde crosslinked chitosan membranes. J Mater Sci Mater Med 15:1105–1112.  https://doi.org/10.1023/B:JMSM.0000046392.44911.46 CrossRefPubMedGoogle Scholar
  24. 24.
    Takara EA, Marchese J, Ochoa NA (2015) NaOH treatment of chitosan films: Impact on macromolecular structure and film properties. Carbohydr Polym 132:25–30.  https://doi.org/10.1016/j.carbpol.2015.05.077 CrossRefPubMedGoogle Scholar
  25. 25.
    dos Santos ZM, Caroni ALPF., Pereira MR et al (2009) Determination of deacetylation degree of chitosan: a comparison between conductometric titration and CHN elemental analysis. Carbohydr Res 344:2591–2595.  https://doi.org/10.1016/j.carres.2009.08.030 CrossRefPubMedGoogle Scholar
  26. 26.
    Svang-Ariyaskul A, Huang RYM, Douglas PL et al (2006) Blended chitosan and polyvinyl alcohol membranes for the pervaporation dehydration of isopropanol. J Memb Sci 280:815–823.  https://doi.org/10.1016/j.memsci.2006.03.001 CrossRefGoogle Scholar
  27. 27.
    Jóźwiak T, Filipkowska U, Szymczyk P et al (2017) Effect of ionic and covalent crosslinking agents on properties of chitosan beads and sorption effectiveness of reactive black 5 dye. React Funct Polym 114:58–74.  https://doi.org/10.1016/j.reactfunctpolym.2017.03.007 CrossRefGoogle Scholar
  28. 28.
    Tasselli F, Mirmohseni A, Seyed Dorraji MS, Figoli A (2013) Mechanical, swelling and adsorptive properties of dry–wet spun chitosan hollow fibers crosslinked with glutaraldehyde. React Funct Polym 73:218–223.  https://doi.org/10.1016/j.reactfunctpolym.2012.08.007 CrossRefGoogle Scholar
  29. 29.
    Tripathi S, Mehrotra GK, Dutta PK (2009) Physicochemical and bioactivity of cross-linked chitosan-PVA film for food packaging applications. Int J Biol Macromol 45:372–376.  https://doi.org/10.1016/j.ijbiomac.2009.07.006 CrossRefPubMedGoogle Scholar
  30. 30.
    de Britto D, Campana-Filho SP (2007) Kinetics of the thermal degradation of chitosan. Thermochim Acta 465:73–82.  https://doi.org/10.1016/j.tca.2007.09.008 CrossRefGoogle Scholar
  31. 31.
    Tripathi S, Mehrotra GK, Dutta PK (2010) Preparation and physicochemical evaluation of chitosan/poly(vinyl alcohol)/pectin ternary film for food-packaging applications. Carbohydr Polym 79:711–716.  https://doi.org/10.1016/j.carbpol.2009.09.029 CrossRefGoogle Scholar
  32. 32.
    Fiori APSdM, Gabiraba VP, Praxedes APP et al (2014) Preparação e caracterização de nanocompósitos poliméricos baseados em quitosana e argilo minerais. Polímeros 24:628–635.  https://doi.org/10.1590/0104-1428.1572 CrossRefGoogle Scholar
  33. 33.
    Ma B, Li X, Qin A, He C (2013) A comparative study on the chitosan membranes prepared from glycine hydrochloride and acetic acid. Carbohydr Polym 91:477–482.  https://doi.org/10.1016/j.carbpol.2012.07.081 CrossRefPubMedGoogle Scholar
  34. 34.
    Matet M, Heuzey M-C, Pollet E et al (2013) Innovative thermoplastic chitosan obtained by thermo-mechanical mixing with polyol plasticizers. Carbohydr Polym 95:241–251.  https://doi.org/10.1016/j.carbpol.2013.02.052 CrossRefPubMedGoogle Scholar
  35. 35.
    Lewandowska K (2009) Miscibility and thermal stability of poly(vinyl alcohol)/chitosan mixtures. Thermochim Acta 493:42–48.  https://doi.org/10.1016/j.tca.2009.04.003 CrossRefGoogle Scholar
  36. 36.
    Mamede LC, Caetano BL, Rocha LA et al (2006) Comportamento térmico de alguns fármacos e medicamentos. Rev Ciencias Farm Basica e Apl 27:151–155Google Scholar
  37. 37.
    Niamsa N, Baimark Y (2009) Preparation and characterization of highly flexible chitosan films for use as food packaging. Am J Food Technol 4:162–169.  https://doi.org/10.3923/ajft.2009.162.169 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Laboratory of Membrane Separation Processes, Department of Chemical EngineeringUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations