Cellulose Fiber Isolation and Characterization from Sweet Blue Lupin Hull and Canola Straw


In this study, cellulose fibers were removed from crop by-products using a combination of sodium hydroxide treatment followed by acidified sodium chlorite treatment. The objective was to obtain high recovery of cellulose by optimizing treatment conditions with sodium hydroxide (5–20%, 25–75 °C and 2–10 h) followed by acidified sodium chlorite (1.7%, 75 °C for 2–6 h) to remove maximum lignin and hemicellulose, as well as to investigate the effect of lignin content of the starting materials on the treatment efficiency. Samples were characterized for their chemical composition, crystallinity, thermal behavior and morphology to evaluate the effects of treatments on the fibers’ structure. The optimum sodium hydroxide treatment conditions for maximum cellulose recovery was at 15% NaOH concentration, 99 °C and 6 h. Subsequent acidified sodium chlorite treatment at 75 °C was found to be effective in removing both hemicellulose and lignin, resulting in higher recovery of cellulose in lupin hull (~ 95%) and canola straw (~ 93%). The resultant cellulose fibers of both crop by-products had increased crystallinity without changing cellulose I structure (~ 68–73%). Improved thermal stabilities were observed with increased onset of degradation temperatures up to 307–318 °C. Morphological investigations validated the effectiveness of treatments, revealing disrupted cell wall matrix and increased surface area due to the removal of non-cellulosics. The results suggest that the optimized combination of sodium hydroxide and acidified sodium chlorite treatments could be effectively used for the isolation of cellulose fibers from sweet blue lupin hull and canola straw, which find a great number of uses in a wide range of industrial applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Azizi Samir MAS, Alloin F, Dufresne A (2005) Biomacromolecules 6:612–626

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Biomacromolecules 10:162–165

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Kadla JF, Gilbert RD (2000) Cell Chem Technol 34:197–216

    CAS  Google Scholar 

  4. 4.

    Kumar V, Reus-Medina MDL, Yang D (2002) Int J Pharm 235:129–140

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Madani A, Kiiskinen H, Olson JA, Martinez MD (2011) Nord Pulp Pap Res J 26:306–311

    Article  CAS  Google Scholar 

  6. 6.

    Osong SH, Norgren S, Engstrand P (2015) Cellulose 23:1–31

    Google Scholar 

  7. 7.

    Modenbach A (2013) Ph.D. dissertation at the University of Kentucky, pp 147–191

  8. 8.

    Silverstein RA, Chen Y, Sharma-Shivappa RR, Boyette MD, Osborne J (2007) Bioresour Technol 98:3000–3011

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Pedersen M, Meyer AS (2009) Biotechnol Prog 25:399–408

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Pan X, Xie D, Kang KY (2007) Appl Biochem Biotechnol 140:367–377

    Google Scholar 

  11. 11.

    Ciftci D, Saldaña MDA (2015) Bioresour Technol 194:75–82

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Carvalheiro F, Duarte LC, Gírio FM (2008) J Sci Ind Res 67:849–864

    CAS  Google Scholar 

  13. 13.

    Kim JS, Lee YY, Kim TH (2016) Bioresour Technol 199:42–48

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Kim TH, Lee YY (2007) Appl Biochem Biotechnol 137:81–92

    PubMed  Google Scholar 

  15. 15.

    Tajkarimi M, Riemann HP, Hajmeer MN, Gomez EL, Rzazvilar V, Cliver DO (2008) Int J Food Microbiol 122:23–28

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Wyman CE, Dale BE, Elander RT, Holzapple M, Ladisch MR, Lee YY (2005) Bioresour Technol 96:1959–1966

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Hubbell CA, Ragauskas AJ (2010) Bioresour Technol 101:7410–7415

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Deshwal BR, Jo HD, Lee HK (2004) Can J Chem Eng 82(3):619–623

    Article  CAS  Google Scholar 

  19. 19.

    Yue Y, Han J, Han G, Zhang Q, French AD, Wu Q (2015) Carbohydr Polym 133:438–447

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Ruangudomsakul W, Ruksakulpiwat C, Ruksakulpiwat Y (2015) Macromol Symp 354:170–176

    Article  CAS  Google Scholar 

  21. 21.

    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) NREL/TP-510-42618. National Renewable Laboratory, Golden

    Google Scholar 

  22. 22.

    Segal L, Creely L, Martin AE, Conrad CM (1959) Text Res J 29:786–794

    Article  CAS  Google Scholar 

  23. 23.

    Bailey RW, Mills SE, Hove EL (1974) J Sci Food Agric 25:955–961

    Article  CAS  Google Scholar 

  24. 24.

    Pronyk C, Mazza G (2012) Bioresour Technol 106:117–124

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Rambabua N, Panthapulakkalb S, Sain M, Dalai AK (2016) Ind Crop Prod 83:746–754

    Article  CAS  Google Scholar 

  26. 26.

    Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Science 251(4999):1318–1323

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Sánchez C (2009) Biotechnol Adv 27:85–194

    Article  CAS  Google Scholar 

  28. 28.

    Grierer J (1986) Wood Sci Technol 20(1):1–33

    Article  Google Scholar 

  29. 29.

    Nishiyama Y (2009) J Wood Sci 55(4):241–249

    Article  CAS  Google Scholar 

  30. 30.

    Revol J, Dietrich A, Goring D (1987) Can J Chem 65:1724–1725

    Article  CAS  Google Scholar 

  31. 31.

    Alemdar A, Sain M (2008) Bioresour Technol 99(6):1664–1671

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Ray D, Sarkar BK, Basak RK, Rana AK (2002) J Appl Polym Sci 85:2594–2599

    Article  CAS  Google Scholar 

  33. 33.

    Mandal A, Chakrabarty D (2011) Carbohydr Polym 86:1291–1299

    Article  CAS  Google Scholar 

  34. 34.

    Manfredi BL, Rodrigue ES, Wladyka PM, Vazquez A (2006) Polym Degrad Stabil 91:255–261

    Article  CAS  Google Scholar 

  35. 35.

    Yang HP, Yan R, Chen HP, Zhen CG, Lee DH, Liang DT (2006) Energy Fuels 20:388–393

    Article  CAS  Google Scholar 

  36. 36.

    Brebu M, Vasile C (2010) Cell Chem Technol 44(9):353–363

    CAS  Google Scholar 

Download references


We are grateful to Natural Sciences and Engineering Research Council of Canada (NSERC, #05356-2014) and the Food Processing Center of University of Nebraska-Lincoln for the financial support to carry out this research.

Author information



Corresponding author

Correspondence to Marleny D. A. Saldaña.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ciftci, D., Flores, R.A. & Saldaña, M.D.A. Cellulose Fiber Isolation and Characterization from Sweet Blue Lupin Hull and Canola Straw. J Polym Environ 26, 2773–2781 (2018). https://doi.org/10.1007/s10924-017-1164-5

Download citation


  • Acidified sodium chlorite
  • Canola straw
  • Cellulose
  • Lignocellulosic biomass
  • Lupin hull
  • Sodium hydroxide