Skip to main content
Log in

Dual Function of Cellulose Triacetate–Graft–Polymethacrylic Acid Films for Dyes Removal and for High-Dose Radiation Dosimetry

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Graft copolymerization of methacrylic acid (MAc) onto cellulose triacetate (CTA) films was conducted by gamma rays. The grafting conditions were optimized. The structure of grafted CTA films was characterized by Fourier transform infra red–attenuated total reflection, scanning electron microscopy, thermal gravimetric analysis, CHNS/O microanalyzer and, surface area and porosity analyzer. The grafted CTA films were exploited in adsorption of ethyl violet (EV) and phenol red (PR) dyes. The adsorption capacity of the grafted CTA films was investigated at various variables. The adsorption isotherms and kinetic study were examined. Further, the dyed grafted CTA films were used in measurements of high dose radiation. The results indicate that the useful dose range extents up to 440 and 300 kGy for EV and PR, respectively. The effects of relative humidity during irradiation, shelf-life, pre- and post-irradiation storage in dark and indirect daylight conditions on dosimeters performance were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Sági G, Kovács K, Bezsenyi A, Csay T, Takács E, Wojnárovits L (2016) Radiat Phys Chem 124:179–183

    Article  CAS  Google Scholar 

  2. Belgin E, Aycik GA, Kalemtas A, Pelit A, Dilek DA, Kavak MT (2015) Radiat Phys Chem115:43–48

    Article  CAS  Google Scholar 

  3. Kimura A, Nagasawa N, Taguchi M (2014) Radiat Phys Chem 103:216–221

    Article  CAS  Google Scholar 

  4. Ma H-L, Zhang Y, Zhang L, Wang L, Sun C, Liu P, He L, Zeng X, Zhai M (2016) Radiat Phys Chem 124:159–163

    Article  CAS  Google Scholar 

  5. Obuah C, Lochee Y, Zinyemba O, Jordaan JHL, Otto DP, Darkwa J (2015) J Mol Catal A 406:185–193

    Article  CAS  Google Scholar 

  6. Oliani WL, Parra DF, Fermino DM, Riella HG, Lima LFCP., Lugao AB (2013) Radiat Phys Chem 84:20–25

    Article  CAS  Google Scholar 

  7. Kim Y-S, Seo K-S, Choi S-H (2016) Radiat Phys Chem 118:35–41

    Article  CAS  Google Scholar 

  8. Villalobos MC, Peláez AAC, González AMH (2016) J Environ Manage 177:65–73

    Article  CAS  Google Scholar 

  9. Song W, Gao B, Xu X, Xing L, Han S, Duan P, Song W, Jia R (2016) Bioresour Technol 210:123–130

    Article  CAS  PubMed  Google Scholar 

  10. Li H, Liu S, Zhao J, Feng N (2016) Colloids Surf A 494:222–227

    Article  CAS  Google Scholar 

  11. Mahmoodi NM, Najafi OMF (2014) Fiber Polym 15:1656–1668

    Article  CAS  Google Scholar 

  12. Li Y, Nie W, Chen P, Zhou Y (2016) Colloids Surf A 499:46–53

    Article  CAS  Google Scholar 

  13. Chatterjee M, Srivastava B, Barman MK, Mandal B (2016) J Chromatogr A 1440:1–14

    Article  CAS  PubMed  Google Scholar 

  14. Liu J, Liu G, Liu W (2014) Chem Eng J 257:299–308

    Article  CAS  Google Scholar 

  15. Kovacs A, Baranyai M, Wojnarovits L, Slezsa I, Mclaughlin WI, Miller A, Moussa A (2000) Radiat Phys Chem 57:711–716

    Article  CAS  Google Scholar 

  16. Mai HH, Duong ND, Kojima T (2004) Radiat Phys Chem 69:439–444

    Article  CAS  Google Scholar 

  17. Shahid MAK, Kousar N, Akhtar N, Hussain T, Awan MS, Mubashir A, Bashir B, Javed A (2012) Int J Basic Appl Sci 8:508–512

    CAS  Google Scholar 

  18. Shahzad A, He M-G (2012) Phys Plasmas 19:083707

    Article  CAS  Google Scholar 

  19. Kattan M, Daher Y, Alkassiri H (2007) Radiat Phys Chem 76:1195–1199

    Article  CAS  Google Scholar 

  20. Bhat NV, Nate MM, Bhat RM, Bhatt BC (2007) Indian J Pure Appl Phys 45:545–548

    CAS  Google Scholar 

  21. Mai HH, Solomon HM, Taguchi M, Kojima T (2008) Radiat Phys Chem 77:457–462

    Article  CAS  Google Scholar 

  22. Akhavan A, Sohrabpour M, Sharifzadeh M (2002) Radiat Phys Chem 63:773–775

    Article  CAS  Google Scholar 

  23. Plazinski W, Rudzinski W, Plazinska A (2009) Adv Colloid Interface Sci 152:2–13

    Article  CAS  PubMed  Google Scholar 

  24. Shahla S, Ngoh GC, Yusoff R (2012) Bioresour Technol 104:1–5

    Article  CAS  PubMed  Google Scholar 

  25. Choy KKH, Porter JF, Mckay G (2004) Chem Eng J 103:133–145

    Article  CAS  Google Scholar 

  26. Cheung W, Szeto Y, McKay G (2007) Bioresour Technol 98:2897–2904

    Article  CAS  PubMed  Google Scholar 

  27. Ramani K, Karthikeyan S, Boopathy R, Kennedy LJ, Mandal AB, Sekaran G (2012) Process Biochem 47:435–445

    Article  CAS  Google Scholar 

  28. Foo K, Hameed B (2010) Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  29. Ho Y (2006) Pol J Environ Stud 15:81–86

    CAS  Google Scholar 

  30. Han X, Niu X, Ma X (2012) Korean J Chem Eng 29:494–502

    Article  CAS  Google Scholar 

  31. Awadallah-F A, Al-Muhtaseb SA (2016) Sep Sci Technol 51:403–415

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Awadallah-F.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awadallah-F, A., Sobhy, A. Dual Function of Cellulose Triacetate–Graft–Polymethacrylic Acid Films for Dyes Removal and for High-Dose Radiation Dosimetry. J Polym Environ 26, 2758–2772 (2018). https://doi.org/10.1007/s10924-017-1163-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1163-6

Keywords

Navigation