Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 7, pp 2758–2772 | Cite as

Dual Function of Cellulose Triacetate–Graft–Polymethacrylic Acid Films for Dyes Removal and for High-Dose Radiation Dosimetry

  • Ahmed Awadallah-F
  • A. Sobhy
Original Paper
  • 71 Downloads

Abstract

Graft copolymerization of methacrylic acid (MAc) onto cellulose triacetate (CTA) films was conducted by gamma rays. The grafting conditions were optimized. The structure of grafted CTA films was characterized by Fourier transform infra red–attenuated total reflection, scanning electron microscopy, thermal gravimetric analysis, CHNS/O microanalyzer and, surface area and porosity analyzer. The grafted CTA films were exploited in adsorption of ethyl violet (EV) and phenol red (PR) dyes. The adsorption capacity of the grafted CTA films was investigated at various variables. The adsorption isotherms and kinetic study were examined. Further, the dyed grafted CTA films were used in measurements of high dose radiation. The results indicate that the useful dose range extents up to 440 and 300 kGy for EV and PR, respectively. The effects of relative humidity during irradiation, shelf-life, pre- and post-irradiation storage in dark and indirect daylight conditions on dosimeters performance were investigated.

Keywords

Graft copolymerization Cellulose triacetate Methacrylic acid Adsorption Dosimetry 

References

  1. 1.
    Sági G, Kovács K, Bezsenyi A, Csay T, Takács E, Wojnárovits L (2016) Radiat Phys Chem 124:179–183CrossRefGoogle Scholar
  2. 2.
    Belgin E, Aycik GA, Kalemtas A, Pelit A, Dilek DA, Kavak MT (2015) Radiat Phys Chem115:43–48CrossRefGoogle Scholar
  3. 3.
    Kimura A, Nagasawa N, Taguchi M (2014) Radiat Phys Chem 103:216–221CrossRefGoogle Scholar
  4. 4.
    Ma H-L, Zhang Y, Zhang L, Wang L, Sun C, Liu P, He L, Zeng X, Zhai M (2016) Radiat Phys Chem 124:159–163CrossRefGoogle Scholar
  5. 5.
    Obuah C, Lochee Y, Zinyemba O, Jordaan JHL, Otto DP, Darkwa J (2015) J Mol Catal A 406:185–193CrossRefGoogle Scholar
  6. 6.
    Oliani WL, Parra DF, Fermino DM, Riella HG, Lima LFCP., Lugao AB (2013) Radiat Phys Chem 84:20–25CrossRefGoogle Scholar
  7. 7.
    Kim Y-S, Seo K-S, Choi S-H (2016) Radiat Phys Chem 118:35–41CrossRefGoogle Scholar
  8. 8.
    Villalobos MC, Peláez AAC, González AMH (2016) J Environ Manage 177:65–73CrossRefGoogle Scholar
  9. 9.
    Song W, Gao B, Xu X, Xing L, Han S, Duan P, Song W, Jia R (2016) Bioresour Technol 210:123–130CrossRefPubMedGoogle Scholar
  10. 10.
    Li H, Liu S, Zhao J, Feng N (2016) Colloids Surf A 494:222–227CrossRefGoogle Scholar
  11. 11.
    Mahmoodi NM, Najafi OMF (2014) Fiber Polym 15:1656–1668CrossRefGoogle Scholar
  12. 12.
    Li Y, Nie W, Chen P, Zhou Y (2016) Colloids Surf A 499:46–53CrossRefGoogle Scholar
  13. 13.
    Chatterjee M, Srivastava B, Barman MK, Mandal B (2016) J Chromatogr A 1440:1–14CrossRefPubMedGoogle Scholar
  14. 14.
    Liu J, Liu G, Liu W (2014) Chem Eng J 257:299–308CrossRefGoogle Scholar
  15. 15.
    Kovacs A, Baranyai M, Wojnarovits L, Slezsa I, Mclaughlin WI, Miller A, Moussa A (2000) Radiat Phys Chem 57:711–716CrossRefGoogle Scholar
  16. 16.
    Mai HH, Duong ND, Kojima T (2004) Radiat Phys Chem 69:439–444CrossRefGoogle Scholar
  17. 17.
    Shahid MAK, Kousar N, Akhtar N, Hussain T, Awan MS, Mubashir A, Bashir B, Javed A (2012) Int J Basic Appl Sci 8:508–512Google Scholar
  18. 18.
    Shahzad A, He M-G (2012) Phys Plasmas 19:083707CrossRefGoogle Scholar
  19. 19.
    Kattan M, Daher Y, Alkassiri H (2007) Radiat Phys Chem 76:1195–1199CrossRefGoogle Scholar
  20. 20.
    Bhat NV, Nate MM, Bhat RM, Bhatt BC (2007) Indian J Pure Appl Phys 45:545–548Google Scholar
  21. 21.
    Mai HH, Solomon HM, Taguchi M, Kojima T (2008) Radiat Phys Chem 77:457–462CrossRefGoogle Scholar
  22. 22.
    Akhavan A, Sohrabpour M, Sharifzadeh M (2002) Radiat Phys Chem 63:773–775CrossRefGoogle Scholar
  23. 23.
    Plazinski W, Rudzinski W, Plazinska A (2009) Adv Colloid Interface Sci 152:2–13CrossRefPubMedGoogle Scholar
  24. 24.
    Shahla S, Ngoh GC, Yusoff R (2012) Bioresour Technol 104:1–5CrossRefPubMedGoogle Scholar
  25. 25.
    Choy KKH, Porter JF, Mckay G (2004) Chem Eng J 103:133–145CrossRefGoogle Scholar
  26. 26.
    Cheung W, Szeto Y, McKay G (2007) Bioresour Technol 98:2897–2904CrossRefPubMedGoogle Scholar
  27. 27.
    Ramani K, Karthikeyan S, Boopathy R, Kennedy LJ, Mandal AB, Sekaran G (2012) Process Biochem 47:435–445CrossRefGoogle Scholar
  28. 28.
    Foo K, Hameed B (2010) Chem Eng J 156:2–10CrossRefGoogle Scholar
  29. 29.
    Ho Y (2006) Pol J Environ Stud 15:81–86Google Scholar
  30. 30.
    Han X, Niu X, Ma X (2012) Korean J Chem Eng 29:494–502CrossRefGoogle Scholar
  31. 31.
    Awadallah-F A, Al-Muhtaseb SA (2016) Sep Sci Technol 51:403–415CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Radiation Research of Polymer DepartmentNational Centre for Radiation Research and Technology, Atomic Energy AuthorityCairoEgypt
  2. 2.Radiation Protection and Dosimetry DepartmentNational Centre for Radiation Research and Technology, Atomic Energy AuthorityCairoEgypt

Personalised recommendations