Abstract
Effects of UV/photo-initiator treatments on crystal formation and properties of polylactide (PLLA) films are investigated. Camphorquinone and riboflavin photo-initiator solutions in methanol are employed in the treatment of amorphous quenched PLLA films. Results from FTIR, ATR-FTIR, DSC, XRD, and SEM show evidence of crystalline domain formation dispersed throughout the film. 1H NMR and GPC results suggest that the molecular weights of the polymer slightly decrease after the treatment. This indicates that the treatment leads to a diffusion of the photo-initiators molecules through the film matrix, resulting in a low degree of PLLA chain scissions, and formation of carboxylic acid and hydroxyl polar end groups. This, in turn, induces PLLA crystallization, which imposes profound effects on surface wettability and physical and mechanical properties of the samples. The process can be applied in optimizing properties of PLLA films with shorter treatment times, compared to other methods, which is suitable for use in various fields; especially those that require specific characteristics like biomedical, packaging and environmental applications.
This is a preview of subscription content, access via your institution.







References
Garlotta D (2001) J Polym Environ 9:63–84
Hartmann MH (1998) In: Kaplan DL (ed) Biopolymers from renewable resources. Springer, Berlin, pp 367–411
Auras RA, Lim LT, Selke SEM, Tsuji H (2011) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, New Jersey
Tokiwa Y, Calabia BP (2006) Appl Microbiol Biotechnol 72:244–251
Fukushima K, Abbate C, Tabuani D, Gennari M, Camino G (2009) Polym Degrad Stab 94:1646–1655
Leenslag JW, Pennings AJ, Bos RRM, Rozema FR, Boering G (1987) Biomaterials 8:311–314
Lim JY, Kim SH, Lim S, Kim YH (2003) Macromol Mater Eng 288:50–57
Nampoothiri KM, Nair NR, John RP (2010) Bioresour Technol 101:8493–8501
Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Compr Rev Food Sci Food Saf 9:552–571
Drumright RE, Gruber PR, Henton DE (2000) Adv Mater 12:1841–1846
Kumari A, Yadav SK, Yadav SC (2010) Colloids Surf B 75:1–18
Sun Z, Zussman E, Yarin AL, Wendorff JH, Greiner A (2003) Adv Mater 15:1929–1932
Prokop A, Helling H-J, Hahn U, Udomkaewkanjana C, Rehm KE (2005) Clin Orthop Relat Res 432:226–233
Auras R, Harte B, Selke S (2004) Macromol Biosci 4:835–864
Devassine M, Henry F, Guerin P, Briand X (2002) Int J Pharm 242:399–404
Rasselet D, Ruellan A, Guinault A, Miquelard-Garnier G, Sollogoub C, Fayolle B (2014) Eur Polym J 50:109–116
Bocchini S, Frache A (2013) Express Polym Lett 7:431–442
Zhang X, Espiritu M, Bilyk A, Kurniawan L (2008) Polym Degrad Stab 93:1964–1970
Qiu Z, Pan H (2010) Compos Sci Technol 70:1089–1094
Kikkawa Y, Abe H, Iwata T, Inoue Y, Doi Y (2002) Biomacromolecules 3:350–356
Tsuji H, Miyauchi S (2001) Polym Degrad Stab 71:415–424
Aoyagi Y, Yamashita K, Doi Y (2002) Polym Degrad Stab 76:53–59
Wachsen O, Platkowski K, Reichert K-H (1997) Polym Degrad Stab 57:87–94
Opaprakasit P, Opaprakasit M, Tangboriboonrat P (2007) Appl Spectrosc 61:1352–1358
Opaprakasit P, Opaprakasit M (2008) Macromol Symp 264:113–120
Hsu ST, Yao YL (2014) J Manuf Sci Eng Trans ASME 136:021006-1–021006-9
Tabi T, Sajó I, Szabó F, Luyt A, Kovács J (2010) Express Polym Lett 4:659–668
Nugroho P, Mitomo H, Yoshii F, Kume T (2001) Polym Degrad Stab 72:337–343
Milicevic D, Trifunovic S, Galovic S, Suljovrujic E (2007) Radiat Phys Chem 76:1376–1380
Montanari L, Cilurzo F, Selmin F, Conti B, Genta I, Poletti G, Orsini F, Valvo L (2003) J Controll Release 90:281–290
Hsu S-T, Tan H, Yao YL (2012) Polym Degrad Stab 97:88–97
Copinet A, Bertrand C, Govindin S, Coma V, Couturier Y (2004) Chemosphere 55:763–773
Yasuda N, Wang Y, Tsukegi T, Shirai Y, Nishida H (2010) Polym Degrad Stab 95:1238–1243
Nakayama N, Hayashi T (2007) Polym Degrad Stab 92:1255–1264
Wang WW, Man CZ, Zhang CM, Jiang L, Dan Y, Nguyen TP (2013) Polym Degrad Stab 98:885–893
Man C, Zhang C, Liu Y, Wang W, Ren W, Jiang L, Reisdorffer F, Nguyen TP, Dan Y (2012) Polym Degrad Stab 97:856–862
Fischer EW, Sterzel HJ, Wegner G (1973) Kolloid Z Z Polym 251:980–990
Pan P, Zhu B, Kai W, Dong T, Inoue Y (2008) Macromolecules 41:4296–4304
Pan P, Kai W, Zhu B, Dong T, Inoue Y (2007) Macromolecules 40:6898–6905
Socrates G (1994) Infrared characteristic group frequencies: tables and charts. Wiley, New York
Gardette M, Thérias S, Gardette J-L, Murariu M, Dubois P (2011) Polym Degrad Stab 96:616–623
Meaurio E, López-Rodríguez N, Sarasua JR (2006) Macromolecules 39:9291–9301
Petchsuk A, Submark W, Opaprakasit P (2013) Polym J 45:406–412
Fulmer GR, Miller AJ, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI (2010) Organometallics 29:2176–2179
Acknowledgements
The authors acknowledge financial support from the National Research University (NRU) grant, provided from The Office of Higher Education Commission (OHEC), the Thammasat University Research Fund (Theme research), and the Center of Excellence in Materials and Plasma Technology (CoE M@P Tech), Thammasat University. Mijanur Rahman thanks the support from the Graduate Scholarship Program for Excellence Foreign scholarship (EFS) by SIIT.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rahman, M., Opaprakasit, P. Effects of UV/Photo-Initiator Treatments on Enhancement of Crystallinity of Polylactide Films and Their Physicochemical Properties. J Polym Environ 26, 2793–2802 (2018). https://doi.org/10.1007/s10924-017-1162-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10924-017-1162-7