Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 7, pp 2803–2812 | Cite as

Tailored Natural Polysaccharides Beads as Green Sorbents for Efficient Lysozyme Adsorption

Original Paper
  • 73 Downloads

Abstract

Herein, we prepared alginate (SA)/carboxymethyl cellulose (CMC) gel beads through Ca2+ and glutaraldehyde (GA) crosslinking and investigated their adsorption performance on lysozyme from aqueous solution. Taking advantage of the abundant active carboxyl groups on SA and CMC, the obtained SA/CMC gel beads present an excellent integrated lysozyme adsorption performance with a high capacity of 236.34 mg g−1, short equilibrium time of 8 h, ease of elution, and good reusability. Furthermore, the resultant SA/CMC gel beads also possess unique selectivity for positively charged proteins, confirmed by the method of sodium dodecyl sulfate polyacrylamide gel electrophoresis. Considering the nature of biopolymers and advantages of favorable physical properties, high efficiency, cost-effectiveness, intriguing adsorption capacity and easier separation from the reaction system, the SA/CMC gel beads may find more potential in protein separation and purification than that of synthetic material.

Keywords

Alginate Carboxymethyl cellulose Lysozyme Efficient adsorption 

Notes

Acknowledgements

This work was partially supported by the China Scholarship Council (201506120259) and Weihai Science and Technology Development Plan Project (2013GNS028).

Supplementary material

10924_2017_1137_MOESM1_ESM.doc (10 mb)
Supplementary material 1 (DOC 10250 KB)

References

  1. 1.
    Kubiak-Ossowska K, Mulheran PA (2010) Mechanism of hen egg white lysozyme adsorption on a charged solid surface. Langmuir 26(20):15954–15965CrossRefGoogle Scholar
  2. 2.
    Kubo T, Arimura S, Tominaga Y, Naito T, Hosoya K, Otsuka K (2015) Molecularly imprinted polymers for selective adsorption of lysozyme and cytochromec using a PEG-based hydrogel: selective recognition for different conformations due to pH conditions. Macromolecules 48(12):4081–4087CrossRefGoogle Scholar
  3. 3.
    Zhang Y, Xing LG, Chen XW, Wang JH (2015) Nano copper oxide-incorporated mesoporous carbon composite as multimode adsorbent for selective isolation of hemoglobin. ACS Appl Mater Interfaces 7(9):5116–5123CrossRefGoogle Scholar
  4. 4.
    Alvarez de Eulate E, Arrigan DW (2012) Adsorptive stripping voltammetry of hen-egg-white-lysozyme via adsorption-desorption at an array of liquid–liquid microinterfaces. Anal Chem 84(5):2505–2511CrossRefGoogle Scholar
  5. 5.
    Strasser S, Niegelhell K, Kaschowitz M, Markus S, Kargl R, Stana-Kleinschek K, Slugovc C, Mohan T, Spirk S (2016) Exploring nonspecific protein adsorption on lignocellulosic amphiphilic bicomponent films. Biomacromolecules 17(3):1083–1092CrossRefGoogle Scholar
  6. 6.
    Wang X, Fu Q, Wang X, Si Y, Yu J, Wang X, Ding B (2015) In situ cross-linked and highly carboxylated poly(vinyl alcohol) nanofibrous membranes for efficient adsorption of proteins. J Mater Chem B 3(36):7281–7290CrossRefGoogle Scholar
  7. 7.
    Fu Q, Wang X, Si Y, Liu L, Yu J, Ding B (2016) Scalable fabrication of electrospun nanofibrous membranes functionalized with citric acid for high-performance protein adsorption. ACS Appl Mater Interfaces 8(18):11819–11829CrossRefGoogle Scholar
  8. 8.
    Ma J, Wang X, Fu Q, Si Y, Yu J, Ding B (2015) Highly carbonylated cellulose nanofibrous membranes utilizing maleic anhydride grafting for efficient lysozyme adsorption. ACS Appl Mater Interfaces 7(28):15658–15666CrossRefGoogle Scholar
  9. 9.
    Kalburcu T, Tabak A, Ozturk N, Tuzmen N, Akgol S, Caglar B, Denizli A (2015) Adsorption of lysozyme from aqueous solutions by a novel bentonite–tyrptophane (Bent–Trp) microcomposite affinity sorbent. J Mol Struct 1083:156–162CrossRefGoogle Scholar
  10. 10.
    Zhu X, Zhang L, Fu A, Yuan H (2016) Efficient purification of lysozyme from egg white by 2-mercapto-5-benzimidazolesulfonic acid modified Fe3O4/Au nanoparticles. Mater Sci Eng C 59:213–217CrossRefGoogle Scholar
  11. 11.
    Odaba M, Denizli A (2004) Cibacron Blue F3GA incorporated magnetic poly(2-hydroxyethyl methacrylate) beads for lysozyme adsorption. J Appl Polym Sci 93(2):719–725CrossRefGoogle Scholar
  12. 12.
    Li S, Mulloor JJ, Wang L, Ji Y, Mulloor CJ, Micic M, Orbulescu J, Leblanc RM (2014) Strong and selective adsorption of lysozyme on graphene oxide. ACS Appl Mater Interfaces 6(8):5704–5712CrossRefGoogle Scholar
  13. 13.
    Zhu J, Sun G (2014) Facile fabrication of hydrophilic nanofibrous membranes with an immobilized metal-chelate affinity complex for selective protein separation. ACS Appl Mater Interfaces 6(2):925–932CrossRefGoogle Scholar
  14. 14.
    Zhu J, Yang J, Sun G (2011) Cibacron Blue F3GA functionalized poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibrous membranes as high efficient affinity adsorption materials. J Membr Sci 385–386:269–276CrossRefGoogle Scholar
  15. 15.
    Dumitriu RP, Stoica I, Vasilescu DS, Cazacu G, Vasile C (2017) Alginate/lignosulfonate blends with photoprotective and antioxidant properties for active packaging applications. J Polym Environ.  https://doi.org/10.1007/s10924-017-1018-1
  16. 16.
    Li J, He J, Huang Y, Li D, Chen X (2015) Improving surface and mechanical properties of alginate films by using ethanol as a co-solvent during external gelation. Carbohydr Polym 123:208–216CrossRefGoogle Scholar
  17. 17.
    Tripathy T, Kolya H, Jana S (2017) Selective lead (II) adsorption and flocculation characteristics of the grafted sodium alginate: a comparative study. J Polym Environ.  https://doi.org/10.1007/s10924-017-1004-7 Google Scholar
  18. 18.
    Agnihotri S, Singhal R (2017) Synthesis and characterization of novel poly(acrylic acid/sodium alginate/sodium humate) superabsorbent hydrogels. Part II: the effect of SH variation on Cu2+, Pb2+, Fe2+ metal ions, MB, CV dye adsorption study. J Polym Environ.  https://doi.org/10.1007/s10924-017-0956-y
  19. 19.
    Ibrahim SM, El Salmawi KM (2012) Preparation and properties of carboxymethyl cellulose (CMC)/sodium alginate (SA) blends induced by gamma irradiation. J Polym Environ 21(2):520–527CrossRefGoogle Scholar
  20. 20.
    Mansouri S, Khiari R, Bettaieb F, El-Gendy AA, Mhenni F (2014) Synthesis and characterization of carboxymethyl cellulose from tunisian vine stem: study of water absorption and retention capacities. J Polym Environ 23(2):190–198CrossRefGoogle Scholar
  21. 21.
    Kim MS, Park SJ, Gu BK, Kim C-H (2012) Ionically crosslinked alginate–carboxymethyl cellulose beads for the delivery of protein therapeutics. Appl Surf Sci 262:28–33CrossRefGoogle Scholar
  22. 22.
    Swamy BY, Yun YS (2015) In vitro release of metformin from iron (III) cross-linked alginate–carboxymethyl cellulose hydrogel beads. Int J Biol Macromol 77:114–119CrossRefGoogle Scholar
  23. 23.
    Liu L, Gao ZY, Su XP, Chen X, Jiang L, Yao JM (2015) Adsorption removal of dyes from single and binary solutions using a cellulose-based bioadsorbent. ACS Sustain Chem Eng 3(3):432–442CrossRefGoogle Scholar
  24. 24.
    Zhang S, Xu F, Wang Y, Zhang W, Peng X, Pepe F (2013) Silica modified calcium alginate–xanthan gum hybrid bead composites for the removal and recovery of Pb(II) from aqueous solution. Chem Eng J 234:33–42CrossRefGoogle Scholar
  25. 25.
    Wang Y, Luo M, Xu F, Zhang W (2015) Conversion of volcanic tephra to zeolites for calcium ion cross-linked alginate–zeolite composites for enhanced aqueous removal of cu(II) ions. Water Air Soil Pollut 226(9):286CrossRefGoogle Scholar
  26. 26.
    Wang L-Y, Wang M-J (2016) Removal of heavy metal ions by poly(vinyl alcohol) and carboxymethyl cellulose composite hydrogels prepared by a freeze–thaw method. ACS Sustain Chem Eng 4(5):2830–2837CrossRefGoogle Scholar
  27. 27.
    Kim J-S, Pathak TS, Yun J-H, Kim K-P, Park T-J, Kim Y, Paeng K-J (2012) Thermal degradation and kinetics of alginate polyurethane hybrid material prepared from alginic acid as a polyol. J Polym Environ 21(1):224–232CrossRefGoogle Scholar
  28. 28.
    Pathak TS, Yun J-H, Lee S-J, Baek D-J, Paeng K-J (2009) Effect of solvent composition on porosity, surface morphology and thermal behavior of metal alginate prepared from algae (Undaria pinnatifida). J Polym Environ 18(1):45–56CrossRefGoogle Scholar
  29. 29.
    Tahtat D, Mahlous M, Benamer S, Khodja AN, Oussedik-Oumehdi H, Laraba-Djebari F (2013) Oral delivery of insulin from alginate/chitosan crosslinked by glutaraldehyde. Int J Biol Macromol 58:160–168CrossRefGoogle Scholar
  30. 30.
    Lu T, Xiang T, Huang X-L, Li C, Zhao W-F, Zhang Q, Zhao C-S (2015) Post-crosslinking towards stimuli-responsive sodium alginate beads for the removal of dye and heavy metals. Carbohydr Polym 133:587–595CrossRefGoogle Scholar
  31. 31.
    Elnashar MMM, Danial EN, Awad GEA (2009) Novel carrier of grafted alginate for covalent immobilization of inulinase. Ind Eng Chem Res 48(22):9781–9785CrossRefGoogle Scholar
  32. 32.
    Mir S, Yasin T, Siddiqi H, M, Murtaza G (2016) Thermal, rheological, mechanical and morphological behavior of high density polyethylene and carboxymethyl cellulose blend. J Polym Environ 25(4):1011–1020Google Scholar
  33. 33.
    Prasad P, Guru GS, Shivakumar HR, Sheshappa Rai K (2012) Investigation on miscibility of sodium alginate/pullulan blends. J Polym Environ 20(3):887–893CrossRefGoogle Scholar
  34. 34.
    Rassu G, Salis A, Porcu EP, Giunchedi P, Roldo M, Gavini E (2016) Composite chitosan/alginate hydrogel for controlled release of deferoxamine: a system to potentially treat iron dysregulation diseases. Carbohydr Polym 136:1338–1347CrossRefGoogle Scholar
  35. 35.
    Roosen J, Pype J, Binnemans K, Mullens S (2015) Shaping of alginate–silica hybrid materials into microspheres through vibrating-nozzle technology and their use for the recovery of neodymium from aqueous solutions. Ind Eng Chem Res 54(51):12836–12846CrossRefGoogle Scholar
  36. 36.
    Vecino X, Devesa-Rey R, Cruz J, Moldes A (2015) Study of the physical properties of calcium alginate hydrogel beads containing vineyard pruning waste for dye removal. Carbohydr Polym 115:129–138CrossRefGoogle Scholar
  37. 37.
    Beele H, Meuleneire F, Nahuys M, Percival SL (2010) A prospective randomised open label study to evaluate the potential of a new silver alginate/carboxymethylcellulose antimicrobial wound dressing to promote wound healing. Int Wound J 7(4):262–270CrossRefGoogle Scholar
  38. 38.
    Tong Q, Xiao Q, Lim LT (2013) Effects of glycerol, sorbitol, xylitol and fructose plasticisers on mechanical and moisture barrier properties of pullulan–alginate–carboxymethylcellulose blend films. Int J Food Sci Technol 48(4):870–878CrossRefGoogle Scholar
  39. 39.
    Luo X, Lei X, Cai N, Xie X, Xue Y, Yu F (2016) Removal of heavy metal ions from water by magnetic cellulose-based beads with embedded chemically modified magnetite nanoparticles and activated carbon. ACS Sustainable Chem Eng 4(7):3960–3969Google Scholar
  40. 40.
    He X, Male KB, Nesterenko PN, Brabazon D, Paull B, Luong JH T (2013) Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose. ACS Appl Mater Interfaces 5:8796–8804CrossRefGoogle Scholar
  41. 41.
    Zhang M, Ding C, Yang J, Lin S, Chen L, Huang L (2004) Kinetic models of sorption: a theoretical analysis. J Colloid Interface Sci 276:47–52CrossRefGoogle Scholar
  42. 42.
    He X, Male KB, Nesterenko PN, Brabazon D, Paull B, Luong JH (2013) Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose. ACS Sustain Chem Eng 5(17):8796–8804Google Scholar
  43. 43.
    Smith SC, Ahmed F, Gutierrez KM, Frigi Rodrigues D (2014) A comparative study of lysozyme adsorption with graphene, graphene oxide, and single-walled carbon nanotubes: Potential environmental applications. Chem Eng J 240:147–154CrossRefGoogle Scholar
  44. 44.
    Che AF, Huang XJ, Xu ZK (2011) Polyacrylonitrile-based nanofibrous membrane with glycosylated surface for lectin affinity adsorption. J Membr Sci 366:272–277CrossRefGoogle Scholar
  45. 45.
    Yu L-L, Sun Y (2013) Protein adsorption to poly(ethylenimine)-modified sepharose FF: II. Effect of ionic strength. J Chromatogr A 1305:85–93CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.College of Textiles and ClothingQingdao UniversityQingdaoChina
  2. 2.MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinChina
  3. 3.Fiber and Polymer ScienceUniversity of CaliforniaDavisUSA

Personalised recommendations