Journal of Polymers and the Environment

, Volume 26, Issue 6, pp 2281–2289 | Cite as

Ketoprofen Loaded in Natural Rubber Latex Transdermal Patch for Tendinitis Treatment

  • Juliana Ferreira FlorianoEmail author
  • Natan Roberto de BarrosEmail author
  • José Luiz Ferreira Cinman
  • Rosangela Gonçalves da Silva
  • Augusto Villela Loffredo
  • Felipe Azevedo Borges
  • Ana Maria Queiros Norberto
  • Ana Laura Destro Chagas
  • Bruna Cambraia Garms
  • Carlos Frederico de Oliveira Graeff
  • Rondinelli Donizetti Herculano
Original Paper


Ketoprofen is an analgesic with potent anti-inflammatory activity against acute inflammation, subacute inflammation, for the acute and long-term treatment of various inflammatory pathologies, as rheumatoid arthritis and colonic adenocarcinoma. In order to minimize the incidence of systemic events related to ketoprofen, the transdermal drug delivery system development has been most important. The advantages of using natural rubber latex membranes include not only the reduction of adverse systemic events, but also the suitability of the low cost of the material together with its physicochemical properties such as flexibility, mechanical stability, surface porosity and water vapor permeability, and besides being a biocompatible material also presents biological activity to stimulate the angiogenesis, being able to be used in tissue repair. This study demonstrated that ketoprofen was successfully incorporated into natural latex membranes for drug delivery. FTIR indicated that the drug did not interact chemically with the membrane. Moreover, the natural latex membranes released 60% of the ketoprofen incorporated in 50 h. SEM images indicated that a portion of the drug was present on the membrane surface, being this portion responsible for the burst release. The tensile tests showed that the addition of the drug into the natural latex membrane did not influence on the polymer mechanical behavior. In addition, drug-natural latex membranes presented no red blood cell damaging effects. Our data shows that the ketoprofen loaded natural latex membranes is a promising system for sustained drug delivery which can be used to minimize the adverse side effects of high dose systemic drug delivery.


Natural rubber latex Transdermal drug delivery system Ketoprofen Anti-inflammatory Biomaterial 



Deproteinized natural rubber latex


Fourier transform infrared


Gentamicin sulfate




Natural rubber latex


Anti-inflammatory drugs




Scanning electron microscopy


Transdermal drug delivery systems


Phosphate buffered saline



Our thanks to Prof. Dr. Joaquin Coutinho Netto (in memoriam), for his great contribution to the study and understanding of the bioactive properties of latex.


This work was supported by CAPES, CNPq (Process: 470261/2012-9) and FAPESP (Processes 2014/17526-8, 2011/17411-8).

Availability of Data and Materials

All data analysed during the current study that are not already included in this published article, are available from the corresponding author on reasonable request.

Authors’ Contributions

This work was carried out in collaboration between all authors. JFF, NRB, JLFC, JLPG, RGS, AVL, FAB, AMQN and ALDC realized the experimental techniques. JFF, AVL and FAB realized the kinetic release of extract, NRB and ALDC realized the SEM, mechanical resistance and FTIR analyses. JLFC, JLPG and AMQN realized the hemolysis assay. The mechanism of release was evaluated by NRB and RGS. NRB, AVL, FAB, BCG and ALCD had corrected the typographical and grammatical errors. Finally, the format of the paper has been updated by RDH and CFOG. RDH and CFOG are advisors and the head of laboratory. All authors read and approved the final paper.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Herculano RD, Silva CP, Ereno C, Guimaraes SAC, Kinoshita AMO, Graeff CFO (2009) Natural rubber latex used as drug delivery system in guided bone regeneration (GBR). Mater Res 12:253–256CrossRefGoogle Scholar
  2. 2.
    Hussain A, Khan GM, Shah SU, Shah KU, Rahim N, Wahab A, Rehman AU (2012) Development of a novel ketoprofen transdermal patch: effect of almond oil as penetration enhancers on in-vitro and ex-vivo penetration of ketoprofen through rabbit skin. Pak J Pharm Sci 25:227–232PubMedGoogle Scholar
  3. 3.
    Rajesh K, Pitchaimani R (2006) Formulation of transdermal drug delivery system. Curr Drug Discov Technol 3:279–285CrossRefGoogle Scholar
  4. 4.
    Rajesh N, Siddaramaiah, Gowda DV, Somashekar CN (2010) Formulation and evaluation of biopolymer based transdermal drug delivery. Int J Pharm Pharm Sci 2:142–147Google Scholar
  5. 5.
    Ramesh G, Vamshi VY, Kishan V, Madhusan RY (2007) Development of nitrendipine transdermal patches: in vitro and ex vivo characterization. Curr Drug Deliv 4:69–76CrossRefGoogle Scholar
  6. 6.
    Thomas G, Kantor MD, Ketoprofen: (1986) A review of its pharmacologic and clinical properties. Pharmacotherapy. doi: 10.1002/j.1875-9114.1986.tb03459.x CrossRefGoogle Scholar
  7. 7.
    Maestrelli F, Zerrouk N, Cirri M, Mura P (2015) Comparative evaluation of polymeric and waxy microspheres for combined colon delivery of ascorbic acid and ketoprofen. Int J Pharm. doi: 10.1016/j.ijpharm.2015.02.073 CrossRefPubMedGoogle Scholar
  8. 8.
    Julou L, Guyonnet JC, Ducrot R, Fournel J, Pasquet J (1976) Ketoprofen (19.583 R.P.) (2-(3-benzoylphenyl)-propionic acid). Main pharmacological properties–outline of toxicological and pharmacokinetic data. Scand J Rheumatol Suppl 1976:33–44PubMedGoogle Scholar
  9. 9.
    Dawson W, Boot JR, Harvey J, Walker JR (1982) The pharmacology of benoxaprofen with particular reference to effects on lipoxygenase products formation. Eur J Rheumatol lnflamm 5:61–68Google Scholar
  10. 10.
    Rahbek I (1976) Gastroscopic evaluation of the effect of a new anti-rheumatic compound, ketoprofen (19.583 R.P.), on the human gastric mucosa. A double-blind cross-over trial against acetylsalicylic acid. Scand J Rheumatol 1976:63–72Google Scholar
  11. 11.
    Barry BW (2001) Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci. doi: 10.1016/S0928-0987(01)00167-1 CrossRefPubMedGoogle Scholar
  12. 12.
    Floriano JF, Mota LSLS, Furtado EL, Rossetto VJV, Graeff CFO (2014) Biocompatibility studies of natural rubber latex from different tree clones and collection methods. J Mater Sci 25:461–470Google Scholar
  13. 13.
    Neves-Junior WFP, Graeff CFO, Ferreira M, Mulato M, Bernardes MS, Coutinho-Netto J (2006) Elastic properties of natural rubber tubes produced by dip-coating. J Appl Polym Sci 100:702–707CrossRefGoogle Scholar
  14. 14.
    Narayanan E, Yee HC (1973) Clonal nursey studies in Hevea. II. Relationship between yield and girth. J Rubber Res Inst Malays 23:332–338Google Scholar
  15. 15.
    Othman AB, Hepbur C, Hasma H (1993) Influence of non-rubber constituents on elastic properties of natural rubber vulcanizates. Plast Rubber Compos Process Appl 19:185–194Google Scholar
  16. 16.
    Silva GA, Coutinho OP, Ducheyne P, Reis RL (2007) Materials in particulate form for tissue engineering applications in bone. J Tissue Eng Regen Méd 1:97–109CrossRefPubMedGoogle Scholar
  17. 17.
    Nascimento RM, Faita FL, Agostini DLS, Job AE, Guimarães FEG, Bechtold IH (2014) Production and characterization of natural rubber–Ca/P blends for biomedical purposes. Mater Sci Eng. doi: 10.1016/j.msec.2014.02.019 CrossRefGoogle Scholar
  18. 18.
    Floriano JF, Neto FC, Mota LSLS, Furtado EL, Ferreira RS, Barraviera B, Gonçalves PJ, Almeida LM, Borges FA, Herculano RD, Graeff CFO (2016) Comparative study of bone tissue accelerated regeneration by latex membranes from Hevea brasiliensis and Hancornia speciosa. Biomed Phys Eng Express. doi: 10.1088/2057-1976/2/4/045007 CrossRefGoogle Scholar
  19. 19.
    Barros NR, Miranda MCR, Borges FA, Mendonça RJ, Cilli EM, Herculano RD (2016) Oxytocin sustained release using natural rubber latex membranes. Int J Pep Res Ther. doi: 10.1007/s10989-016-9523-y CrossRefGoogle Scholar
  20. 20.
    Barros NR, Chagas PAM, Borges FA, Gemeinder JLP, Miranda MCR, Garms BC, Herculano RD (2015) Diclofenac potassium transdermal patches using natural rubber latex biomembranes as carrier. J Mater. doi: 10.1155/2015/807948 CrossRefGoogle Scholar
  21. 21.
    Aielo PB, Borges FA, Romeira KM, Miranda MCR, Arruda LB, Filho PNL, Drago BC, Herculano RD (2014) Evaluation of sodium diclofenac release using natural rubber latex as carrier. Mat Res 17:146–152CrossRefGoogle Scholar
  22. 22.
    Pichayakorn W, Suksaeree J, Boonme P, Amnuaikit T, Taweepreda W, Ritthidej GM (2012) Nicotine transdermal patches using polymeric natural rubber as the matrix controlling system: effect of polymer and plasticizer blends. J Membr Sci. doi: 10.1016/j.memsci.2012.04.017 CrossRefGoogle Scholar
  23. 23.
    Suksaeree J, Boonme P, Taweepreda W, Ritthidej GC, Pichayakorn W (2012) Characterization, in vitro release and permeation studies of nicotine transdermal patches prepared from deproteinized natural rubber latex blends. ChemEng Res Des. doi: 10.1016/j.cherd.2011.11.002 CrossRefGoogle Scholar
  24. 24.
    Phaechamud T, Issarayungyuen P, Pichayakorn W (2016) Gentamicin sulfate-loaded porous natural rubber films for wound dressing. Int J Biol Macromol. doi: 10.1016/j.ijbiomac.2016.01.040 CrossRefPubMedGoogle Scholar
  25. 25.
    Barros NR, Miranda MCR, Borges FA, Gemeinder JLP, Mendonça RJ, Cilli EM, Herculano RD (2017) Natural rubber latex: development and in vitro characterization of a future transdermal patch for enuresis treatment. Int J Polym Mater Po. doi: 10.1080/00914037.2017.1280795 CrossRefGoogle Scholar
  26. 26.
    Onuma Y, Satake M, Ukena T, Roux J, Chanteau S, Rasolofonirina N, Ratsimaloto M, Naoki H, Yasumoto T (1999) Identification of putative palytoxin as the cause of clupeotoxism. Toxicon. doi: 10.1016/S0041-0101(98)00133-0 CrossRefPubMedGoogle Scholar
  27. 27.
    Borges FA, Bolognesi LFC, Treco A, Drago BC, Arruda LB, Lisboa-Filho PN, Perri EG, Graeff CFO, Santos AG, Miranda MCR, Herculano RD (2014) Natural rubber latex: study of a novel carrier for Casearia sylvestris Swartz delivery. ISRN Polym Sci. doi: 10.1155/2014/241297 CrossRefGoogle Scholar
  28. 28.
    Garms BC, Borges FA, Santos RE, Nigoghossian K, Miranda MCR, Miranda IU, Daltro P, Scarpari SL, Giagio RJ, Barros NR, Alarcon KM, Drago BC, Gemeinder JLP, Oliveira BH, Nascimento VMG, Loffredo AL, Herculano RD (2017) Characterization and microbiological application of ciprofloxacin loaded in natural rubber latex membranes. Br J Pharm Res. doi: 10.9734/BJPR/2017/31614 CrossRefGoogle Scholar
  29. 29.
    Murbach HD, Ogawa GJ, Borges FA, Miranda MCR, Lopes R, Barros NR, Mazalli AVG, Silvia RG, Cinman JLF, Drago BC, Herculano RD (2014) Ciprofloxacin release using natural rubber latex membranes as carrier. Int J Biomater. doi: 10.1155/2014/157952 CrossRefGoogle Scholar
  30. 30.
    Aravindaram AS, Nandan RVS, Gowda DV, Khan MS (2011) Development and evaluation of Ketoprofen loaded biopolymer based transdermal film. Scholars Res Library 3:233–244Google Scholar
  31. 31.
    Al-Nasi AA, Al-Tahami KA (2016) Preparation, characterization, and in vitro release of ketoprofen loaded polymeric microspheres. Int J PharmTech Res 9:313–321Google Scholar
  32. 32.
    Tous S, Fathy M, Fetih G, Gad SF (2014) Preparation and evaluation of ketoprofen-loaded calcium alginate beads. Int J Pharm Tech Res 6:1100–1112Google Scholar
  33. 33.
    Anh NT, Chi NT, Tran TK, Dao TPT, Le NTN, Chien DM, Hoai NT (2012) Preparation and characterization of ketoprofen loaded eudragit RS polymeric nanoparticles for controlled release. Adv Nat Sci Nanosci Nanotechnol. doi: 10.1088/2043-6262/3/4/045015 CrossRefGoogle Scholar
  34. 34.
    Borges FA, Almeida-Filho E, Miranda MCR, dos Santos ML, Herculano RD, Guastaldi AC (2015) Natural rubber latex coated with calcium phosphate for biomedical application. J Biomater Sci Polym Ed. doi: 10.1080/09205063.2015.1086945 CrossRefPubMedGoogle Scholar
  35. 35.
    Herculano RD, de Queiroz AAA, Kinoshita A, Oliveira ON Jr, Graeff CFO, Herculano RD (2011) On the release of metronidazole from natural rubber latex membranes. Mat Sci Eng C. doi: 10.1016/j.msec.2010.09.007 CrossRefGoogle Scholar
  36. 36.
    Mazières B (2005) Topical ketoprofen patch. Drugs R D 6:337–444CrossRefPubMedGoogle Scholar
  37. 37.
    Mazières B, Rouanet S, Guillon Y, Scarsi C, Reiner V (2005) Topical ketoprofen patch in the treatment of tendinitis: a randomized, double blind, placebo controlled study. J Rheumatol 32:1563–1570PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Juliana Ferreira Floriano
    • 1
    • 7
    Email author
  • Natan Roberto de Barros
    • 2
    • 3
    • 8
    Email author
  • José Luiz Ferreira Cinman
    • 4
  • Rosangela Gonçalves da Silva
    • 2
    • 3
  • Augusto Villela Loffredo
    • 4
  • Felipe Azevedo Borges
    • 2
    • 3
  • Ana Maria Queiros Norberto
    • 5
  • Ana Laura Destro Chagas
    • 6
  • Bruna Cambraia Garms
    • 2
    • 3
  • Carlos Frederico de Oliveira Graeff
    • 1
  • Rondinelli Donizetti Herculano
    • 3
  1. 1.School of SciencesSão Paulo State University (UNESP)BauruBrazil
  2. 2.Institute of ChemistrySão Paulo State University (UNESP)AraraquaraBrazil
  3. 3.School of Pharmaceutical SciencesSão Paulo State University (UNESP)AraraquaraBrazil
  4. 4.School of Sciences, Humanities and LanguagesSão Paulo State University (UNESP)AssisBrazil
  5. 5.Faculty of MedicineSão Paulo University (USP)Ribeirão PretoBrazil
  6. 6.UFTM – ICBNUberabaBrazil
  7. 7.Department of physics, School of SciencesSão Paulo State University (UNESP)BauruBrazil
  8. 8.Pharmaceutical Science Center, Institute of ChemistrySão Paulo State University (UNESP)AraraquaraBrazil

Personalised recommendations