Skip to main content
Log in

Aliphatic–Aromatic Polyols by Thiol–Ene Reactions

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Aliphatic–aromatic polyols were synthesized by thiol–ene reactions (photochemical or thermal) using mercaptanized starting materials from bio-based compounds: limonene dimercaptan, thioglycerol, mercaptanized castor oil and isosorbide (3-mercaptopropyl) ether. Aromatic starting materials were phenols containing double bonds; ortho-allyl phenol (OAP, petrochemical-based) and eugenol (EUG, bio-based). The phenolic hydroxyl groups were blocked by alkoxylation with propylene oxide (PO) or glycidol (GLY) prior to use in thiol–ene reaction. The aromatic rings were attached to the mercaptans by reacting thiol groups with the double bonds of alkoxylated OAP (OAP–PO and OAP–GLY) and alkoxylated EUG (EUG–PO and EUG–GLY). These synthesized aliphatic–aromatic polyols were utilized for preparation of rigid polyurethane foams whose physical–mechanical properties were superior to those made only from bio-based aliphatic polyols. These rigid PU foams can be used in a wide range of applications; such as thermal insulation of freezers, buildings, pipes and storage tanks for food and chemical industries, as wood substitute, packaging materials and flotation materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Scheme 4
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu F, Zhu J (2015) In: Liu Z, Kraus G (eds) Green materials from plant oils. Royal Society of Chemistry, London, pp 93–126

    Google Scholar 

  2. Smith PB, Payne GF (2011) In: Payne GF, Smith PB (eds) Renewable and sustainable polymers. ACS Publications, Washington, D.C., pp 1–10

    Google Scholar 

  3. Petrović ZS, Javni I, Ionescu M (2013) J Renew Mater 3:167

    Article  CAS  Google Scholar 

  4. Nohra B, Candy L, Blanco JF, Guerin C, Raoul Y, Mouloungui Z (2013) Macromolecules 46:3771

    Article  CAS  Google Scholar 

  5. Petrović ZS (2008) Polym Rev 48:109

    Article  CAS  Google Scholar 

  6. Petrović ZS, Yang L, Zlatanić A, Zhang W, Javni I (2007) J Appl Polym Sci 105:2717

    Article  CAS  Google Scholar 

  7. Ionescu M (2005) Chemistry and technology of polyols for polyurethanes. Rapra Technology Limited, Shawbury

    Google Scholar 

  8. Guo A, Cho Y, Petrović ZS (2000) J Polym Sci 38:3900

    Article  CAS  Google Scholar 

  9. Petrović ZS, Javni I, Guo A, Zhang W (2002) US Pat. 6,433,121

  10. Petrović ZS, Guo A, Javni I (2003) US Pat. 6,573,354

  11. Petrović ZS, Javni I, Guo A, Zhang W (2004) US Pat. 6,686,435

  12. Kandanarachchi P, Guo A, Petrović ZS (2002) J Mol Catal A 184:65

    Article  CAS  Google Scholar 

  13. Kandanarachchi P, Guo A, Demydov D, Petrović ZS (2002) J Am Oil Chem Soc 79:1221

    Article  CAS  Google Scholar 

  14. Tran NB, Vialle J, Pham QT (1997) Polymer 38:2467

    Article  CAS  Google Scholar 

  15. Petrović ZS, Fajnik D (1984) J Appl Polym Sci 29:1031

    Article  Google Scholar 

  16. Mutlu H, Meier MR (2010) Eur J Lipid Sci Technol 112:10

    Article  CAS  Google Scholar 

  17. Bakhshi H, Yeganeh H, Mehdipour-Ataei S, Solouk A, Irani S (2013) Macromolecules 46:7777

    Article  CAS  Google Scholar 

  18. Kattimuttathu S, Kishanprasad VS (2005) Ind Eng Chem Res 44:4504

    Article  CAS  Google Scholar 

  19. Ionescu M, Wan X, Bilic N, Petrovic ZS (2012) J Polym Environ 20:647

    Article  CAS  Google Scholar 

  20. Ionescu M, Petrovic ZS (2013) Inform 24:393

    Google Scholar 

  21. Hoyle CE, Bowman CN (2010) Angew Chem Int Ed 49:1540

    Article  CAS  Google Scholar 

  22. Lowe AB (2010) Polym Chem 5:17

    Article  Google Scholar 

  23. Lowe B, Harvison MA (2010) Aust J Chem 63:1251

    Article  CAS  Google Scholar 

  24. Bantchev GB, Kenar JA, Biresaw G, Han MG (2009) J Agric Food Chem 57:1282

    Article  CAS  PubMed  Google Scholar 

  25. Uygun M, Tasdelen MA, Y. Yagci (2010) Macromol Chem Phys 211:103

    Article  CAS  Google Scholar 

  26. Kade M, Burke DJ, Hawker CJ (2010) J Polym Sci A 48:743

    Article  CAS  Google Scholar 

  27. Cramer NB, Reddy SK, O’Brien AK, Bowman CN (2003) Macromolecules 36:7964

    Article  CAS  Google Scholar 

  28. Caillol S, Desroches M, Carlotti S, Auvergne R, Boutevin B (2013) Green Mater 1:16

    Article  CAS  Google Scholar 

  29. Caillol S, Boutevin B, Desroches M, Int. Pat. 2,012,001,315

  30. Lligadas G, Ronda JC, Galia M, Cadiz V (2010) Polymers 2:440

    Article  CAS  Google Scholar 

  31. Desroches M, Caillol S, Auvergne R, Boutevin B (2012) Eur J Lipid Sci Technol 114:84

    Article  CAS  Google Scholar 

  32. Lligadas G, Ronda JC, Galia M, Cadiz V (2010) Biomacromolecules 11:2825

    Article  CAS  PubMed  Google Scholar 

  33. Desroches M, Caillol S, Lapinte V, Auvergne R, Boutevin B (2011) Macromolecules 44:2489

    Article  CAS  Google Scholar 

  34. Ionescu M, Radojcić D, Wan X, Petrović ZS, Upshaw TA (2015) Eur Polym J 67:439

    Article  CAS  Google Scholar 

  35. Gupta RK, Ionescu M, Radojcić D, Wan X, Petrović ZS (2014) J Polym Environ 22:304

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihail Ionescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrestha, M.L., Ionescu, M. Aliphatic–Aromatic Polyols by Thiol–Ene Reactions. J Polym Environ 26, 2257–2267 (2018). https://doi.org/10.1007/s10924-017-1123-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1123-1

Keywords

Navigation