Journal of Polymers and the Environment

, Volume 26, Issue 7, pp 2782–2792 | Cite as

A Novel Hyperbranched Polymeric Flocculant for Waste-Water Treatment

  • Kun Xu
  • Haiwei Wang
  • Xuechen Liang
  • Ying Tan
  • Xianping Yao
  • Pixin Wang
Original Paper


Cationic hyperbranched oligomer poly(N-acryloyl-1,2-diaminoethane hydrochloride) (HADE) was firstly synthesized by Michael addition reaction. And then, a series of cationic flocculants poly(acrylamide/N-acryloyl-1,2-diaminoethane hydrochlorides) (PAM-HADEs) with hyperbranched structure was prepared from HADE as macro-monomer and acrylamide (AM). The structures of PAM-HADEs were characterized by Fourier transform infrared spectrometry, 1H and 13C nuclear magnetic resonance spectroscopy, gel permeation chromatography (GPC) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF). And the properties were systematically evaluated by intrinsic viscosity, zeta potential and hydrodynamic radius. The mechanism of the cationic hyperbranched copolymer used in water treatment was extensively studied via a jar test in which the transmittance of the supernatant, settling time, and average floc size were used to evaluate the flocculability. Compared with the linear flocculant poly (acrylamide/liner-N-acryloyl-1,2-diaminoethane hydrochloride) (PAM-LADE), the novel hyperbranched polymeric flocculants exhibited outstanding flocculability which were reflected by shorter settlement time, high transmittance and large floc size. The primary cause that PAM-HADEs owned excellent flocculability is the more stretching configuration and less chains entanglement of PAM-HADEs in waste-water due to their hyperbranched structure compared with that of the linear PAM-LADE which exhibited curly coil configuration. On the other hand, abundant and exposed cationic terminal groups of PAM-HADEs originated from their hyperbranched structure also hint higher flocculation capacity. At optimum dosages of the polymer, the transmittance of the supernatant is less at low and high pH values, indicating that the natural pH (pH 7.29) of the suspension is the most appropriate pH for the flocculation.


Cationic polyacrylamide Hyperbranched structure Flocculability Oil-field fracturing waste-water 



This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51673191 and 51321062) and Jilin Province Science and Technology Development Project Foundation (Grant No. 20160101306JC). And we also grateful thank Tao Wang, Yuan Tao and Chao Chen for their help in supplying the oil-field wastewater to investigate the properties of flocculants and useful discussion.


The authors declare no competing financial interest.

Supplementary material

10924_2017_1120_MOESM1_ESM.doc (736 kb)
Supplementary material 1 (DOC 736 KB)


  1. 1.
    Tang B, Liu H, Cui Z, Zhang S (2014) J Appl Polym Sci 131:1–15Google Scholar
  2. 2.
    Razali MAA, Ahmad Z, Ahmad MSB, Ariffin A (2011) Chem Eng J 166:529–535CrossRefGoogle Scholar
  3. 3.
    Song L, Johnson PR, Elimelech M (1994) Environ Sci Technol 28:1164–1171CrossRefPubMedGoogle Scholar
  4. 4.
    Fan HK (2011) J Chem Technol Biotechnol 86:246–250CrossRefGoogle Scholar
  5. 5.
    Wang Y, Chen K, Mo L, Li J (2013) J Appl Polym Sci 130:1092–1097CrossRefGoogle Scholar
  6. 6.
    Lu Y, Shang Y, Huang X, Chen A, Yang Z, Jiang Y, Cai J, Gu W, Qian X, Yang H (2011) Ind Eng Chem Res 50:7141–7149CrossRefGoogle Scholar
  7. 7.
    Sun Y, Zheng H, Tan M, Wang Y, Tang X, Feng L, Xiang X (2014) J Appl Polym Sci 131:2113–2124Google Scholar
  8. 8.
    Piazza GJ, Lora JH, Garcia RA (2015) J Chem Techn Biotechnol 90:1419–1425CrossRefGoogle Scholar
  9. 9.
    Zou C, Liang M, Chen X, Yan X (2013) J Appl Polym Sci 131:93–98Google Scholar
  10. 10.
    Dykes GM (2001) J Chem Techn Biotechnol 76:903–918CrossRefGoogle Scholar
  11. 11.
    Hawker CJ, Wooley KL (2005) Science 309:1200–1205CrossRefPubMedGoogle Scholar
  12. 12.
    Fréchet JM (2003) J Polym Sci A 41:3713–3725CrossRefGoogle Scholar
  13. 13.
    Sadeghi-Kiakhani M, Arami M, Gharanjig K (2013) J Appl Polym Sci 127:2607–2619CrossRefGoogle Scholar
  14. 14.
    Peng X, Peng X, Liu S, Zhao J (2009) Express Polym Lett 3:510–517CrossRefGoogle Scholar
  15. 15.
    Goino M, Esumi K (1998) J Colloid Interface Sci 203:214–217CrossRefGoogle Scholar
  16. 16.
    Gao C, Yan D (2004) Prog Polym Sci 29:183–275CrossRefGoogle Scholar
  17. 17.
    Lin Y, Gao J-W, Liu H-W, Li Y-S (2009) Macromolecules 42:3237–3246CrossRefGoogle Scholar
  18. 18.
    Magnusson CD, Kelland MA (2015) Energy Fuel 29:1336–2341Google Scholar
  19. 19.
    Zhang Y, Peng H, Huang W, Zhou Y, Zhang X, Yan D (2008) J Phy Chem C 112:2330–2336CrossRefGoogle Scholar
  20. 20.
    Tu C, Li N, Zhu L, Zhou L, Su Y, Li P, Zhu X (2013) Polym Chem 4:393–401CrossRefGoogle Scholar
  21. 21.
    Wang Y, Kotsuchibashi Y, Liu Y, Narain R (2014) Langmuir 30:2360–2368CrossRefPubMedGoogle Scholar
  22. 22.
    Arts HJ, Derks FJM, Hyett W, Witters S, US2015021274-A1Google Scholar
  23. 23.
    Arts HJ, Derks FJM, Hyett W, Witters S, Arts H, Derks F, WO2013092800-A1Google Scholar
  24. 24.
    Arts HJ, Dikken T, Dinkelberg R, WO2014202756-A1Google Scholar
  25. 25.
    Hobson LJ, Feast WJ (1999) Polymer 40:1279–1297CrossRefGoogle Scholar
  26. 26.
    Lois J, Kenwright AM (1997) Chem Commun 1877–1879Google Scholar
  27. 27.
    Guan Q, Zheng H, Zhai J, Zhao C, Zheng X, Tang X, Chen W, Sun Y (2014) Ind Eng Chem Res 53:5624–5635CrossRefGoogle Scholar
  28. 28.
    Zhang X, Yang Z, Wang Y, Gao BY, Yue Q (2012) Chem Eng J 211–212:186–194CrossRefGoogle Scholar
  29. 29.
    Nasser MS, James AE (2006) Sep Purif Techno 52:241–252CrossRefGoogle Scholar
  30. 30.
    Mourey TH, Turner S, Rubinstein M, Fréchet J, Hawker C, Wooley K (1992) Macromolecules 25:2401–2406CrossRefGoogle Scholar
  31. 31.
    Hawker CJ, Farrington PJ, Mackay ME, Wooley KL, Frechet JMJ (1995) J Am Chem Soc 117:4409–4410CrossRefGoogle Scholar
  32. 32.
    Farrington PJ, Hawker CJ, Fréchet JMJ, Mackay ME (1998) Macromolecules 31:5043–5050CrossRefPubMedGoogle Scholar
  33. 33.
    Hickenbottom KL, Hancock NT, Hutchings NR, Appleton EW, Beaudry EG, Pei X, Cath TY (2013) Desalination 312:60–66CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Hangzhou Research Institute of Chemical TechnologyHangzhouPeople’s Republic of China

Personalised recommendations