Journal of Polymers and the Environment

, Volume 26, Issue 5, pp 2173–2181 | Cite as

Absorption of Siderite Within a Chemically Modified Poly(lactic acid) Based Composite Material for Agricultural Applications

  • Nancy L. Garcia
  • Mirta Fascio
  • María Inés Errea
  • Alain Dufresne
  • Silvia Goyanes
  • Norma D’AccorsoEmail author
Original Paper


Iron is an essential micronutrient for higher plants. Although abundant in most soils, Fe3+ is not available for plant uptake, because of its poor solubility. Ferrous sulfate is a fertilizer used for crops but, Fe2+ is readily oxidized to the plant-unavailable ferric form. It is therefore important to provide Fe2+ to plants, minimizing the loss of this nutrient by oxidation in Fe3+. This paper reports the development of a composite material consisting of a matrix (PLARAM), obtained by the chemical modification of poly(lactic acid), capable of retaining ferrous carbonate (siderite) within PLARAM (PLARAMFe). From the matrix, Fe2+ is released into the soil, enhancing its bioavailability. PLARAM and PLARAMFe films were obtained and their water wettability was studied. One side of the films was more hydrophilic than the other, turning this material attractive as a protective film when it is necessary to avoid loss of humidity.


Bilayer Biodegradable Nano biocomposite Poly(lactic acid) l-Rhamnose Siderite 



The authors thank the financial support of UBACyT (No. 20020130100495BA and 20020130100021BA), ANPCyT (PICT- 2012-0717 and PICT-2012-1093), and CONICET (PIP 2013–2015, 11220120100508CO and 11220110100370CO).


  1. 1.
    Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, Fang X, Auras R (2016) Poly(lactic acid)—mass production, processing, industrial applications, and end of life. Adv Drug Deliv Rev 107:333–366CrossRefGoogle Scholar
  2. 2.
    Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci F 9(5):552–571CrossRefGoogle Scholar
  3. 3.
    Sin LT, Rahmat AR, Rahman WAWA (2013) 1—overview of poly(lactic acid). In: Polylactic acid. William Andrew Publishing, Oxford, pp 1–70Google Scholar
  4. 4.
    Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Progr Polym Sci 28(11):1539–1641CrossRefGoogle Scholar
  5. 5.
    Pluta M, Galeski A, Alexandre M, Paul MA, Dubois P (2002) Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: structure and some physical properties. J Appl Polym Sci 86(6):1497–1506CrossRefGoogle Scholar
  6. 6.
    Sabliov C, Chen H, Yada R (2015) Nanotechnology and functional foods: effective delivery of bioactive ingredients. Wiley, ChichesterCrossRefGoogle Scholar
  7. 7.
    Helfferich FG (1962) Ion exchange. McGraw-Hill, New YorkGoogle Scholar
  8. 8.
    Del Campilllo Garcia MC, Sanchez Alcala I, Barron de la Torre V, Torrent Castelet J, Delgado Garcia A, Method for preventing and correcting iron chlorosis in plants. Patent WO2010076353: 2010Google Scholar
  9. 9.
    Garcia N, Lamanna M, D’Accorso N, Dufresne A, Aranguren M, Goyanes S (2012) Biodegradable materials from grafting of modified PLA onto starch nanocrystals. Polym Degrad Stab 97:2021–2026CrossRefGoogle Scholar
  10. 10.
    Liu X, Wang H, Su C, Zhang P, Bai J (2010)) Controlled fabrication and characterization of microspherical FeCO3 and α-Fe2O3. J Colloid Interface Sci 351(2):427–432CrossRefGoogle Scholar
  11. 11.
    Qu X-F Y, Qi-Zhi Zhou, Gen-Tao (2011) Synthesis of siderite microspheres and their transformation to magnetite microspheres. Eur J Mineral 11(23):759–770CrossRefGoogle Scholar
  12. 12.
    Guan J, Yan G, Wang W, Liu J (2012) External field-assisted solution synthesis and selectively catalytic properties of amorphous iron nanoplatelets. J Mater Chem 22(9):3909–3915CrossRefGoogle Scholar
  13. 13.
    Kopinke FD, Remmler M, Mackenzie K, Möder M, Wachsen O (1996) Thermal decomposition of biodegradable polyesters—II. Poly(lactic acid). Polym Degrad Stab 53(3):329–342CrossRefGoogle Scholar
  14. 14.
    Piemonte V, Gironi F (2013) Kinetics of hydrolytic degradation of PLA. J Polym Environ 21(2):313–318CrossRefGoogle Scholar
  15. 15.
    García NL, Ribba L, Dufresne A, Aranguren MI, Goyanes S (2009) Physico-mechanical properties of biodegradable starch nanocomposites. Macromol Mater Eng294(3):169–177CrossRefGoogle Scholar
  16. 16.
    Lamanna M, Morales NJ, García NL, Goyanes S (2013) Development and characterization of starch nanoparticles by gamma radiation: potential application as starch matrix filler. Carbohydr Polym 97(1):90–97CrossRefGoogle Scholar
  17. 17.
    Zilli D, Chiliotte C, Escobar MM, Bekeris V, Rubiolo GR, Cukierman AL, Goyanes S (2005) Magnetic properties of multi-walled carbon nanotube–epoxy composites. Polym 46(16):6090–6095CrossRefGoogle Scholar
  18. 18.
    Flannery RL, Busscher WJ (1982) Use of a synthetic polymer in potting soils to improve water holding capacity. Commun Soil Sci Plant Anal 13(2):103–111CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Nancy L. Garcia
    • 1
  • Mirta Fascio
    • 1
    • 2
  • María Inés Errea
    • 3
  • Alain Dufresne
    • 4
  • Silvia Goyanes
    • 5
  • Norma D’Accorso
    • 1
    • 2
    Email author
  1. 1.CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR)Buenos AiresArgentina
  2. 2.Departamento de Química Orgánica, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Instituto Tecnológico de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
  4. 4.Université Grenoble Alpes, CNRS, Grenoble INP, LGP2GrenobleFrance
  5. 5.Departamento de FísicaFCEyN, UBA and IFIBABuenos AiresArgentina

Personalised recommendations