Skip to main content
Log in

Green Synthesis of Fe3O4/Cellulose/Polyvinyl Alcohol Hybride Aerogel and Its Application for Dye Removal

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A novel Fe3O4/cellulose–polyvinyl alcohol (PVA) aerogel was successfully synthesized by an eco-friendly and facile method in this work. Cellulose/PVA matrix was prepared through an environmental friendly physical cross-linking process and further in-situ decorated with Fe3O4. Series of Fe3O4 decorated aerogels were prepared and the effects of Fe3O4 nanoparticles (NPs) on the aerogels were systematic investigated. As-prepared aerogels exhibited desirable properties including nanostructure, relatively high porosity, improved mechanical and superparamagnetism. The TEM results showed that Fe3O4 NPs were integrated in the three-dimensional matrix of cellulose/PVA with a diameter of 9–12 nm. Furthermore, the mechanical strength of the aerogels was significantly enhanced after the introduction of Fe3O4 NPs. Meanwhile, the obtained Fe3O4/cellulose/PVA aerogel exhibited excellent adsorption performance toward methyl blue dye, and can be reused through fenton-like catalysts oxidative degradation of organic dye in H2O2 solution. Therefore, they will have a great potential application as eco-friendly and economical adsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu S, Yan Q, Tao D, Yu T, Liu X (2012) Highly flexible magnetic composite aerogels prepared by using cellulose nanofibril networks as templates. Carbohydr Polym 89(2):551–557. doi:10.1016/j.carbpol.2012.03.046

    Article  CAS  PubMed  Google Scholar 

  2. Wang X, Lu LL, Yu ZL, Xu XW, Zheng YR, Yu SH (2015) Scalable template synthesis of resorcinol-formaldehyde/graphene oxide composite aerogels with tunable densities and mechanical properties. Angew Chem 54(8):2397–2401. doi:10.1002/anie.201410668

    Article  CAS  Google Scholar 

  3. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994. doi:10.1039/c0cs00108b

    Article  CAS  PubMed  Google Scholar 

  4. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem 50(24):5438–5466

    Article  CAS  Google Scholar 

  5. Liu S, Yan Q, Tao D, Yu T, Liu X (2012) Highly flexible magnetic composite aerogels prepared by using cellulose nanofibril networks as templates. Carbohydr Polym 89(89):551–557

    Article  CAS  PubMed  Google Scholar 

  6. Xu MM, Bao WQ, Xu SP, Wang XH, Sun RC (2016) Porous cellulose aerogels with high mechanical performance and their absorption behaviors. Bioresources 11(1):8–20

    CAS  Google Scholar 

  7. Cai J, Liu S, Feng J, Kimura S, Wada M, Kuga S, Zhang L (2012) Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew Chem Int Ed 51(9):2076–2079

    Article  CAS  Google Scholar 

  8. Lu Y, Sun QF, Li J, Liu YX (2014) Fabrication, characterization and photocatalytic activity of TiO2/cellulose composite aerogel. Key Eng Mater 609:542–546

    Article  Google Scholar 

  9. Olsson RT, Samir MASA, Salazar-Alvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogués J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5(8):584–588

    Article  CAS  PubMed  Google Scholar 

  10. Chong KY, Chia CH, Zakaria S, Sajab MS, Chook SW, Khiew PS (2015) CaCO3-decorated cellulose aerogel for removal of Congo Red from aqueous solution. Cellulose 22(4):2683–2691

    Article  CAS  Google Scholar 

  11. Zhou SK, Wang M, Chen X, Xu F (2015) Facile template synthesis of microfibrillated cellulose/polypyrrole/silver nanoparticles hybrid aerogels with electrical conductive and pressure responsive properties. ACS Sustain Chem Eng 3(12):3346–3354. doi:10.1021/acssuschemeng.5b01020

    Article  CAS  Google Scholar 

  12. Qi H, Liu J, Pionteck J, Pötschke P, Mäder E (2015) Carbon nanotube–cellulose composite aerogels for vapour sensing. Sens Actuators B 213:20–26. doi:10.1016/j.snb.2015.02.067

    Article  CAS  Google Scholar 

  13. Jin H, Kettunen M, Laiho A, Pynnönen H, Paltakari J, Marmur A, Ikkala O, Ras RHA (2011) Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuir 27(5):1930–1934

    Article  CAS  PubMed  Google Scholar 

  14. Javadi A, Zheng Q, Payen F, Javadi A, Altin Y, Cai Z, Sabo R, Gong S (2013) Polyvinyl alcohol-cellulose nanofibrils-graphene oxide hybrid organic aerogels. ACS Appl Mater Interfaces 5(13):5969–5975. doi:10.1021/am400171y

    Article  CAS  PubMed  Google Scholar 

  15. Wei L, Wu Q, Xin Z, Huang Z, Cao J, Jian L, Liu S (2014) Enhanced thermal and mechanical properties of PVA composites formed with filamentous nanocellulose fibrils. Carbohydr Polym 113:403–410

    Article  CAS  Google Scholar 

  16. Rescignano N, Fortunati E, Montesano S, Emiliani C, Kenny JM, Martino S, Armentano I (2014) PVA bio-nanocomposites: A new take-off using cellulose nanocrystals and PLGA nanoparticles. Carbohydr Polym 99(1):47–58

    Article  CAS  PubMed  Google Scholar 

  17. Lee SY, Mohan DJ, Kang IA, Doh GH, Lee S, Han SO (2009) Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fibers Polym 10(1):77–82

    Article  CAS  Google Scholar 

  18. Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44(8):2489–2498. doi:10.1016/j.eurpolymj.2008.05.024

    Article  CAS  Google Scholar 

  19. Chang CY, Lue A, Zhang L (2008) Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromol Chem Phys 209(12):1266–1273. doi:10.1002/macp.200800161

    Article  CAS  Google Scholar 

  20. Souza SF, Leão AL, Cai JH, Wu C, Sain M, Cherian BM (2010) Nanocellulose from curava fibers and their nanocomposites. Mol Cryst Liq Cryst 522(1):42/[342]–352/[352]

    Article  CAS  Google Scholar 

  21. Zheng QF, Cai ZY, Gong SQ (2014) Green synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J Mater Chem A 2(9):3110–3118. doi:10.1039/c3ta14642a

    Article  CAS  Google Scholar 

  22. Zubir NA, Yacou C, Motuzas J, Zhang XW, da Costa JCD (2014) Structural and functional investigation of graphene oxide-Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction. Sci Rep. doi:10.1038/Srep04594

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5(6):539–548

    Article  CAS  PubMed  Google Scholar 

  24. Wei TY, Lu SY, Chang YC (2009) A new class of opacified monolithic aerogels of ultralow high-temperature thermal conductivities. J Phys Chem C 113(17):7424–7428. doi:10.1021/jp900380q

    Article  CAS  Google Scholar 

  25. Liu X, Zhou Y, Nie W, Song L, Chen P (2015) Fabrication of hydrogel of hydroxypropyl cellulose (HPC) composited with graphene oxide and its application for methylene blue removal. J Mater Sci 50(18):6113–6123. doi:10.1007/s10853-015-9166-y

    Article  CAS  Google Scholar 

  26. Isogai A, Usuda M, Kato T, Uryu T, Atalla RH (1989) Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs. Macromolecules 22(7):3168–3172

    Article  CAS  Google Scholar 

  27. Hema M, Selvasekarapandian S, Arunkumar D, Sakunthala A, Nithya H (2009) FTIR, XRD and ac impedance spectroscopic study on PVA based polymer electrolyte doped with NH4X(X = Cl, Br, I). J Non-Cryst Solids 355(2):84–90. doi:10.1016/j.jnoncrysol.2008.10.009

    Article  CAS  Google Scholar 

  28. Zhou J, Li R, Liu S, Li Q, Zhang L, Zhang L, Guan J (2009) Structure and magnetic properties of regenerated cellulose/Fe3O4 nanocomposite films. J Appl Polym Sci 111(5):2477–2484

    Article  CAS  Google Scholar 

  29. Zhu HY, Fu YQ, Jiang R, Jiang JH, Xiao L, Zeng GM, Zhao SL, Wang Y (2011) Adsorption removal of Congo red onto magnetic cellulose/Fe3O4/activated carbon composite: equilibrium, kinetic and thermodynamic studies. Chem Eng J 173(2):494–502

    Article  CAS  Google Scholar 

  30. Liu S, Ke D, Zeng J, Zhou J, Peng T, Zhang L (2011) Construction of inorganic nanoparticles by micro-nano-porous structure of cellulose matrix. Cellulose 18(4):945–956. doi:10.1007/s10570-011-9556-5

    Article  CAS  Google Scholar 

  31. Luo XG, Liu SL, Zhou JP, Zhang LN (2009) In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery. J Mater Chem 19(21):3538–3545. doi:10.1039/b900103d

    Article  CAS  Google Scholar 

  32. Luo X, Zhang L (2009) High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon. J Hazard Mater 171(1–3):340–347

    Article  CAS  PubMed  Google Scholar 

  33. Chang C, Lue A, Zhang L (2008) Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromol Chem Phys 209(12):1266–1273. doi:10.1002/macp.200800161

    Article  CAS  Google Scholar 

  34. Yan Q, Zhang C, Fei L, Bo X, Liu G, Qi Z (2009) Equilibrium and kinetics study on the adsorption of perfluorooctanoic acid from aqueous solution onto powdered activated carbon. J Hazard Mater 169(1–3):146–152

    Google Scholar 

  35. Arıca MY, Bayramoğlu G (2007) Biosorption of reactive Red-120 dye from aqueous solution by native and modified fungus biomass preparations of Lentinus sajor-caju. J Hazard Mater 149(2):499–507

    Article  CAS  PubMed  Google Scholar 

  36. Munoz M, Pedro ZMD, Casas JA, Rodriguez JJ (2015) Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation—A review. Appl Catal B 176:249–265

    Article  CAS  Google Scholar 

  37. Xu L, Wang J (2012) Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol. Environ Sci Technol 46(18):10145–10153

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21303142), the research fund from the Xiamen Southern Oceanographic Center (No. 4GZP59HJ29), Fujian Provincial Department of Ocean and Fisheries (No. 2015-27), and President Fund of Xiamen University (No. 20720150090).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Liu or Minnan Long.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 42 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, D., Liu, J., Gan, L. et al. Green Synthesis of Fe3O4/Cellulose/Polyvinyl Alcohol Hybride Aerogel and Its Application for Dye Removal. J Polym Environ 26, 2234–2242 (2018). https://doi.org/10.1007/s10924-017-1116-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1116-0

Keywords

Navigation