Journal of Polymers and the Environment

, Volume 26, Issue 5, pp 2086–2095 | Cite as

Isolation and Characterization of Biocompatible Collagen from the Skin of Puffer Fish (Lagocephalus inermis)

  • S. Iswariya
  • Poornima Velswamy
  • T. S. Uma
Original Paper


In this present study, acid soluble collagen and pepsin soluble collagen from the skin of marine puffer fish Lagocephalus inermis was successfully isolated and characterized. The collagens extracted from the fish skin showed the high yields of both acid solubilized collagen (ASC) (43.1%) and Pepsin soluble collagen (PSC) (56.6%) on the dry weight basis, respectively. Based on electrophoretic patterns, both ASC and PSC consisted of two α- chains (α1 and α2) and were characterized as type I collagen. Amino acid analysis of both the collagen contained the imino acid of 190 and 198 residues/1000 residues, respectively. The ultraviolet absorption spectrum of collagen showed maximum absorption at 230 nm. Fourier transforms infrared spectra of both ASC, PSC was almost similar, and the acidic or enzymatic extraction had no effect on the triple helical structure of collagen. The denaturation temperature (Td) of the collagen was found to be 31.9 °C for ASC and 32.6 °C for PSC, respectively. Both ASC and PSC had highest solubility at acidic pH. Scanning electron microscopy images revealed the porous structure of collagens and both the collagens showed 100% biocompatible on NIH3T3 cell lines. These characteristic features are essential for wound dressing applications. From this study, a useful product recovery was achieved from the underutilized puffer fish, which may serve as an alternative source for mammalian collagen, as well as the management of natural wastes or ecological problems.


Acid soluble collagen Pepsin soluble collagen FT-IR Solubility Biocompatibility 



The authors thank the Government of India, Department of Science and Technology (DST), New Delhi for providing a financial assistance in the form of Women Scientist Fellowship (Grant No. SR/WOS-A/LS-86/2013) for this study.


  1. 1.
    Gelse K, Pöschl E, Aigner T (2003) Adv Drug Deliv Rev 55:1531–1546CrossRefGoogle Scholar
  2. 2.
    Yamada S, Yamamoto K, Ikeda T et al (2014) Biomed Res Int 2014:302932CrossRefGoogle Scholar
  3. 3.
    Nair R, Sevukarajan M, Mohammed T, Badivaddin CK, Kumar A (2010) J Innov trends Pharm Sci 1:288–304Google Scholar
  4. 4.
    Friess W (1998) Eur J Pharm Biopharm 45:113–136CrossRefGoogle Scholar
  5. 5.
    Lee CH, Singla A, Lee Y (2001) Int J Pharm 221:1–22CrossRefGoogle Scholar
  6. 6.
    Fleck CA, Simman R (2010) J Am Coll Certif Wound Spec 2:50–54Google Scholar
  7. 7.
    Parenteau-bareil R, Gauvin R, Berthod F (2010) Materials 3:1863–1887CrossRefGoogle Scholar
  8. 8.
    Samouillan V, Delaunay F, Dandurand J, Merbahi N (2011) J Funct Biomater 2:230–248CrossRefGoogle Scholar
  9. 9.
    khan R, Khan MH, Bey A (2011) Biol Med 3:25–32Google Scholar
  10. 10.
    Addad S, Exposito JY, Faye C, Blum SR, Lethias C (2011) Mar Drugs 9:967–983CrossRefGoogle Scholar
  11. 11.
    Nagai T, Araki Y, Suzuki N (2002) Food Chem 78:173–177CrossRefGoogle Scholar
  12. 12.
    Ridzwan M, Hashim M (2015) Int Food Res J 22:1–8Google Scholar
  13. 13.
    Wu Z, Xie L, Xia G, Zhang J, Nie Y, Hu J, Wang S, Zhang R (2005) Toxicon 45:851–859CrossRefGoogle Scholar
  14. 14.
    Nishida S, Yamashita K, Sakaguchi Y, Abe T ST (1991) J Food Hyg Soc Jpn 32:513–519CrossRefGoogle Scholar
  15. 15.
    Tsiamis K, Aydogan O, Bailly N et al (2015) Medit Mar Sci 16:472–488CrossRefGoogle Scholar
  16. 16.
    Mori H, Tone Y, Shimizu K, Zikihara K, Tokutomi S, Ida T, Ihara H, Hara M(2013) Mater Sci Eng C 33:174–181 MH)CrossRefGoogle Scholar
  17. 17.
    Kittiphattanabawon P, Benjakul S, Visessanguan W, Kishimura H (2010) Food Chem 119:1519–1526CrossRefGoogle Scholar
  18. 18.
    Huang YR, Shiau CY, Chen HH, Huang BC (2011) Food Hydrocoll 25:1507–1513CrossRefGoogle Scholar
  19. 19.
    Tsiamis K, Aydogan Ö, Bailly N, Balistreri P BM (2015) Medit Mar Sci 16:472–488CrossRefGoogle Scholar
  20. 20.
    Matsuura K (2014) Ichthyol Res 62:72–113CrossRefGoogle Scholar
  21. 21.
    Nagashima Y, Matsumoto T, Kadoyama K, Ishizaki S, Teryama M (2011) J Toxicol. doi: 10.1155/2011/801285 Google Scholar
  22. 22.
    AOAC (2000). Official methods for analysis. Association of official analytical chemist Inc, ArlingtonGoogle Scholar
  23. 23.
    Nagai T, Izumi M, Ishii M (2004) Int J Food Sci Technol 39:239–244CrossRefGoogle Scholar
  24. 24.
    Nagai T, Suzuki N (2000) Food Chem 68:277–281CrossRefGoogle Scholar
  25. 25.
    Zhang M, Liu W, Li G (2009) Food Chem 115:826–831CrossRefGoogle Scholar
  26. 26.
    Laemmli, UK (1970) Nature 227:680–685CrossRefGoogle Scholar
  27. 27.
    Montero P, Borderia J, Turnay J, Leyzarbe MA (1990) J Agric Food Chem 38:604–609CrossRefGoogle Scholar
  28. 28.
    Tang L, Chen S, Su W, Weng W, Osako K TM (2015) Process Biochem 50:148–155CrossRefGoogle Scholar
  29. 29.
    Leong L, Sahalan A, Tan L, Mustafa H RF (2015) J Appl Pharm Sci 5:019–023CrossRefGoogle Scholar
  30. 30.
    Dai Z, Ronholm J, Tian Y, Sethi B CX (2016) J Tissue Eng 7:1–13CrossRefGoogle Scholar
  31. 31.
    Hemalatha T, Yadav S, Krithiga G, Sastry TP (2016) Polym Bull 73:3105–3117CrossRefGoogle Scholar
  32. 32.
    Senaratne LS, Park PJ, Kim SK (2006) Bioresour Technol 97:191–197CrossRefGoogle Scholar
  33. 33.
    Singh P, Benjakul S, Maqsood S, Kishimura H (2011) Food Chem 124:97–105CrossRefGoogle Scholar
  34. 34.
    Kaewdang O, Benjakul S, Kaewmanee T KH (2014) Food Chem 155:264–270CrossRefGoogle Scholar
  35. 35.
    Wang Z, Wang L, Lin S, Liang Q, Shi Z, Xu J, Ma H (2014) Biotechnol Bioprocess Eng 19:935–941CrossRefGoogle Scholar
  36. 36.
    Veeruraj A, Arumugam M, Ajithkumar T, Balasubramanian T (2015) Food Hydrocoll 43:708e716CrossRefGoogle Scholar
  37. 37.
    Kumar NSS, Nazeer RA, Jaiganesh R (2012) Int J Pept Res Ther 18:185–192CrossRefGoogle Scholar
  38. 38.
    Veeruraj A, Arumugam M, Balasubramanian T (2013) Process Biochem 48:1592–1602CrossRefGoogle Scholar
  39. 39.
    Fernandes R, Couto Neto R, Paschoal C, Rohling J BC (2008) Colloids Surf B 62:17–21CrossRefGoogle Scholar
  40. 40.
    Woo J, Yu S, Cho S, Lee Y KS (2008) Food Hydrocoll 22:879–887CrossRefGoogle Scholar
  41. 41.
    Sadowska M, Kołodziejska I, Niecikowska C (2003) Food Chem 81:257–262CrossRefGoogle Scholar
  42. 42.
    Pati F, Adhikari B, Dhara S (2010) Bioresour Technol 101:3737–3742CrossRefGoogle Scholar
  43. 43.
    Li Z, Wang B, Chi C, Zhang Q, Gong Y, Tang J, Luo H (2013) Food Hydrocoll 31:103–113CrossRefGoogle Scholar
  44. 44.
    Kittiphattanabawon P, Benjakul S, Visessanguan W, Nagai T, Tanaka M (2005) Food Chem 89:363–372CrossRefGoogle Scholar
  45. 45.
    Rochdi A, Foucat L, Renou J (2000) Food Chem 69:295–299CrossRefGoogle Scholar
  46. 46.
    Sadowska M, Kolodziejska I, Niecikowska C (2003) Food Chem 81:257–262CrossRefGoogle Scholar
  47. 47.
    Zhang F, Zhang F, Wang A, Li Z, He S, Shao L et al (2011) Food Nutr Sci 2:818–823CrossRefGoogle Scholar
  48. 48.
    Muyonga JH, Cole CGB, Duodu KG (2004) Food Chem 85:81–89CrossRefGoogle Scholar
  49. 49.
    Huang C-Y, Kuo J-M, Wu S-J, Tsai H-T (2016) Food Chem 190:997–1006CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Bio-Products LaboratoryCSIR—Central Leather Research InstituteChennaiIndia

Personalised recommendations