Journal of Polymers and the Environment

, Volume 26, Issue 5, pp 2049–2060 | Cite as

Evaluation of Biodegradability of Potato Peel Powder Based Polyolefin Biocomposites

  • Vatsala Sugumaran
  • Haripada Bhunia
  • Anudeep K. Narula
Original Paper
  • 66 Downloads

Abstract

Solid waste accumulation due to synthetic polymer and polymer composites used in packaging is causing a major threat to human and wildlife. Biodegradation of plastics and biocomposites in environment is a viable solution to this problem and yet a complex phenomenon due to diversity and efficiency of microbial communities involved in attacking the various biocomposite materials. The aim of the present work was to evaluate the biodegradability of biocomposites prepared from potato-peel powder together with polypropylene (POPL/PP) or linear low density polyethylene (POPL/LLDPE) plus maleic anhydride grafted polyolefin compatibilizers. To achieve this, biodegradability tests were conducted according to ASTM D 5338 on the specimen samples for 45 days. The specimens were also analysed post-biodegradation using scanning electron microscope (SEM), thermogravimetric analyser (TGA) and direct scanning calorimeter (DSC) techniques to study the changes in morphology and thermal properties. Biocomposites with 40% (w/w) POPL filler in PP without compatibilizer showed maximum degradation upto 10%, while the LLDPE composites showed biodegradation upto 1%. Addition of compatibilizers reduced the biodegradability in the composites. The results were well corroborated by percentage weight loss in the test biocomposite specimens. Biodegradation in the biocomposites was shown to be dependent on POPL content.

Keywords

Potatoes peel powder Polyolefins Composites Compatibilizers Biodegradation 

References

  1. 1.
    Mohanty AK, Misra M, Drzal LT (2002) J Polym Environ 10:19–26CrossRefGoogle Scholar
  2. 2.
    Khalid M, Chuah LCA, Ratnam CT (2010) Malaysia Patent 2010004392Google Scholar
  3. 3.
    Iwanczuk A, Kozlowski M, Lukaszewicz M, Jablonski S (2015) J Polym Environ 23:277–282CrossRefGoogle Scholar
  4. 4.
    Haris MY, Laila D, Zainudin ES, Musstappha F, Zahari R, Halim Z (2011) Key Eng Mater 471–472Google Scholar
  5. 5.
    Ashori A (2008) Bioresour Technol 99:4661–4667CrossRefGoogle Scholar
  6. 6.
    Gurunathan T, Smita A, Nayak SK (2015) Composites Part A 77:1–25CrossRefGoogle Scholar
  7. 7.
    Bashim ASM, Manusamy Y (2015)Polym Plast Technol Eng 54:87–99CrossRefGoogle Scholar
  8. 8.
    Kolybaba M, Tabil LG, Panigrahi S, Crerar WJ, Powell T, Wang B (2003) Paper no. RRV03-0007, ASAE meeting presentation. The Society of Engineering in Agricultural, Food and Biological systems, St. JosephGoogle Scholar
  9. 9.
    Tokiwa Y, Buenaventurada PC, Charles UU, Seiichi A (2009) Int J Mol Sci 10:3722–3742CrossRefGoogle Scholar
  10. 10.
    Nathalie L, Bienaime C, Christian B, Michele Q, Silvestre F, Jose ENS (2008) Chemosphere 73:429–442CrossRefGoogle Scholar
  11. 11.
    Arutchelvi J, Sudhakar M, Arkatkar A, Doble M, Bhaduri S, Uppara PV (2008) Indian J Biotechnol 7:9–22Google Scholar
  12. 12.
    Sen SK, Raut S (2015) J Environ Chem Eng 3:462–473CrossRefGoogle Scholar
  13. 13.
    Gajendiran A, Krishnamoorthy S, Abraham J (2016) 3 Biotech 6:1–6CrossRefGoogle Scholar
  14. 14.
    Mishra S, Talele NR (2002) Polym Plast Technol Eng (2002) 41:361–381Google Scholar
  15. 15.
    Hojbota G, Mihal R, Nicoleta B (2000) Rev Chim 51:342–348Google Scholar
  16. 16.
    Pichaiyuti S, Winunthorn S, Thongpet C, Nakason C (2016) Iran Polym J 25:711–723CrossRefGoogle Scholar
  17. 17.
    Vidal R, Martinez P, Garrai D (2009) Int J Life Cycle Assess 14:73–82CrossRefGoogle Scholar
  18. 18.
    Bikiaris D, Panayiotou C (1998) J Appl Polym Sci 70:1503–1521CrossRefGoogle Scholar
  19. 19.
    Cacciari I, Quatrini P, Zirletta G, Mincione E, Vinciguerra V, Lupatelli P, Sermanni GG (1993) Appl Environ Microbiol 59:3695–3700Google Scholar
  20. 20.
    Wei L, Liang S, MacDonald AG (2015) Ind Crop Prod 69:91–103CrossRefGoogle Scholar
  21. 21.
    Sugumaran V, Vimal KK, Kapur GS, Narula AK (2015) J Appl Polym Sci 132:10356CrossRefGoogle Scholar
  22. 22.
    Durmus A, Kasgoz A, Macosko CW (2008) J Macromol Sci 47:608–619CrossRefGoogle Scholar
  23. 23.
    Sahin S, Yayla P (2005) Polym Testing 24:1012–1021CrossRefGoogle Scholar
  24. 24.
    Quinn FA, Mandelkern L (1958) J Am Chem Soc 80:3178–3182CrossRefGoogle Scholar
  25. 25.
    Tsuji H, Miyauchi S (2001) Polym Degrad Stab 71:415–424CrossRefGoogle Scholar
  26. 26.
    Zuchoswka D, Hlavata D, Steller R, Adamiak W, Meissner W (1999) Polym Degrad Stab 64:339–347CrossRefGoogle Scholar
  27. 27.
    Vasile C, Seymour RB (eds) (2009) Degradation and decomposition, In: Handbook of polyolefins synthesis and properties. Marcel Dekker Inc, New YorkGoogle Scholar
  28. 28.
    Chattopadhyay SK, Singh S, Pramanik N, Niyogi UK, Khandal RK, Uppaluri R, Ghoshal AK (2011)J Appl Polym Sci 121:2226–2232CrossRefGoogle Scholar
  29. 29.
    Ipekoglu B, Boke H, Cizer O (2007) Build Environ 42:970–978CrossRefGoogle Scholar
  30. 30.
    Jakubowicz I, Yarahmadi N, Petersen H (2006) Polym Degrad Stab 91:1556–1562CrossRefGoogle Scholar
  31. 31.
    Sahari J, Salit MS, Zainudin ES, Maleque MA (2014) Fibres Text East Eur 22:96–98Google Scholar
  32. 32.
    Thakore IM, Desai S, Sarawade BD, Devi S (2001) Eur Polym J37:151–160CrossRefGoogle Scholar
  33. 33.
    Sam ST, Ismail H, Ahmad Z (2011) Polym Plast Technol Eng 50:851–861CrossRefGoogle Scholar
  34. 34.
    Parparita E, Nistor MT, Popescu M-C, Vasile C (2014) Polym Degrad Stab 109:13–20CrossRefGoogle Scholar
  35. 35.
    Monika A, Jerzy J (2009) Food Sci Technol 42:1219–1224Google Scholar
  36. 36.
    Roy SB, Shit SC, Sengupta RA, Shukla PR (2015) Int J Innov Res Sci Eng Technol 4:1120–1130Google Scholar
  37. 37.
    Luckachan GE, Pillai CKS (2011) J Polym Environ 19:637–667CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Vatsala Sugumaran
    • 1
    • 2
  • Haripada Bhunia
    • 3
  • Anudeep K. Narula
    • 1
  1. 1.University School of Basic and Applied SciencesGuru Gobind Singh Indraprastha UniversityNew DelhiIndia
  2. 2.Research & Development CentreIndian Oil Corporation LimitedFaridabadIndia
  3. 3.Department of Chemical EngineeringThapar UniversityPatialaIndia

Personalised recommendations