Abstract
The synthesis of hydroxyapatite (HAp) in the presence of cellulose nanofibrils (CNF) or TEMPO-oxidized CNF (TCNF) was performed in situ by wet chemical precipitation process, using chemical precursors, to hybrid a low-cost biosorbents for removal of Co2+ as a model heavy metal ion. The removal is investigated by batch adsorption method depending on the pH value, the dosage of adsorbent, initial Co2+ concentration and the contact time of adsorption. The removal of Co2+ reached the maximum (87%) at pH 6 by using a dosage of 0.5 g L−1. The TCNFs is shown to increase the nucleation and growth of the HAp synthesized, providing higher surface area (138 m2 g−1) with lower pore diameter (11.89 nm), compared to the CNFs based hybrid (135 m2 g−1, 14.42 nm) or pure HAp (118 m2 g−1, 13.32 nm), however, both resulting to a higher adsorption capacity (25 mg g−1) of Co2+ compared to HAp or TCNF (20–22 mg g−1). The adsorption is follows primarily by pseudo-first and Elovic order kinetic models which is due to the physisorption of Co2+ and surface ionic interactions with available negative phosphate (from HAp) and/or carboxylic (from TCNF) groups, fitting well with the Freundlich adsorption isotherm, and secondly due to the ion-exchange mechanism of Co2+ with Ca2+ from HAp. Both hybrid adsorbents show good adsorption (≥40%) capacity even after third reusing cycle, and high temperature stability (weight loss of 14%) up to 1000 °C, however, the CNF-HAp hybrid represent a high-value alternative to relatively costly TCNF.
This is a preview of subscription content, access via your institution.










References
Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Int J Phys Sci 2(5):112–118
Abdel Salam OE, Reiad NA, ElShafei MM (2011) J Adv Res 2(4):297–303
Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Environ Chem Lett 8(3):199–216
Lim SR, Schoenung JM (2010) J Hazard Mater 177(1–3):251–259
Robinson BH (2009) Sci Total Environ 408(22):183–191
Eladlani N, Dahmane EM, Ouahrouch A, Rhazi M, Taourirte M (2017) J Polym Environ 1–6
Järup L (2003) Br Med Bull 68(1):167–182
Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008) Environ Pollut 152(3):686–692
Denkhaus E, Salnikow K (2002) Crit Rev Oncol Hematol 42(1):35–56
Griswold W, Martin S (2009) Environ Sci Technol 15:1–6
Goldhaber SB (2003) Regul Toxicol Pharmacol 38(2):232–242
Wang X, Sato T, Xing B, Tao S (2005) Sci Total Environ 350(1–3):28–37
Lindsay D, Kerr W (2011) Nat Chem 3:494
Pohl HR, Wheeler JS, Murray HE (2013) Met Ions Life Sci 13:1–28
Gustaf Elinder C (1984) Environ Toxicol Chem 7(3):251–256
Barałkiewicz D, Siepak J (1999) Pol J Environ Stud 8(4):201–208
Smičiklas I, Dimović S, Plećaš I, Mitrić M Water Res 40(2):2267–2274
Gogoi D, Shanmugamani AG, Rao SVS, Kumar T, Shreekumar B, Sinha PK (2013) J Radioanal Nucl Chem 295(2):1531–1535
Handley-Sidhu S, Mullan TK, Grail Q, Albadarneh M, Ohnuki T, Macaskie LE (2016) Sci Rep 6:23361
Abbas M, Kaddour S, Trari M (2014) Ind Eng Chem Res 20(3):745–751
Fang F, Kong L, Huang J, Wu S, Zhang K, Wang X, Sun B, Jin Z, Wang J, Huang XJ, Liu J (2014) J Hazard Mater 270:1–10
Bhatnagar A, Minocha AK, Sillanpää M (2010) Biochem Eng J 48(2):181–186
Erdem E, Karapinar N, Donat R (2004) J Colloid Interface Sci 280(2):309–314
Corami A, Mignardi S, Ferrini V (2008) J Colloid Interface Sci 317(2):402–408
Mobasherpour I, Salahi E, Pazouki M (2012) Arab J Chem 5(4):439–446
Admassu W, Breese T (1999) J Hazard Mater 69(2):187–196
Stötzel C, Müller FA, Reinert F, Niederdraenk F, Barralet JE, Gbureck U Colloids Surf B 74(1):91–95
Mousa SM, Ammar NS, Ibrahim HA (2016) J Saudi Chem Soc 20(3):357–365
Treccani L, Yvonne Klein T, Meder F, Pardun K, Rezwan K (2013) Acta Biomater 9(7):7115–7150
Zhang Y, Liu Y, Ji X, Banks CE, Zhang W (2011) Chem Commun 47(14):4126–4128
Verwilghen C, Rio S, Nzihou A, Gauthier D, Flamant G, Sharrock PJ (2007) J Mater Sci 42(15):6062–6066
Zhang Z, Li M, Chen W, Zhu S, Liu N, Zhu L (2010) Environ Pollut 158(2):514–519
Padmanabhan SK, Balakrishnan A, Chu MC, Lee YC, Kim TN, Cho SJ (2009) Particuology 7(6):466–470
Zhao XY, Zhu YJ, Lu BQ, Chen F, Qi C, Zhao J, Wu J (2013) Cryst Eng Comm 15(39):7926–7935
Bharath G, Kumar KJ, Karthick K, Mangalaraj D, Viswanathan C, Ponpandian N (2014) RSC Adv 4(70):37446–37457
Li Z, Wen T, Su Y, Wei X, He C, Wang D (2014) Cryst Eng Comm 16(20):4202–4209
Jiang S, Yao Q, Zhou G, Fu S (2012) J Phys Chem C 116(7):4484–4492
Bazargan-Lari R, Zafarani HR, Bahrololoom ME, Nemati A (2014) J Taiwan Inst Chem Eng 45(4):1642–1648
Aliabadi M, Irani M, Ismaeili J, Najafzadeh S (2014) J Taiwan Inst Chem Eng 45(2):518–526
Lei Y, Guan J, Chen W, Ke Q, Zhang C (2015) RSC Adv 5(32):25462–25470
Gopalakannan V, Viswanathan N (2015)) Ind Eng Chem Res 54(50):12561–12569
Googerdchian F, Moheb A, Emadi R (2012) Chem Eng J 200–202:471–479
Oladipo AA, Gazi M (2015) Toxicol Environ Chem 98(2):1–15
Hokkanen S, Bhatnagar A, Repo E, Lou S, Sillanpää M (2016) Chem Eng J 283:445–452
Choi S, Jeong YFibers Polym 9(3):267–270
Jamiu ZA, Saleh TA, Ali SA (2017) J Hazard Mater 327:44–54
Ahmadpour A, Tahmasbi M, Bastami TR, Besharati JA (2009) J Hazard Mater 66(2):925–930
Krishnan KA, Anirudhan TS (2008) Chem Eng J 137(2):257–264
Rengaraj S, Moon SH (2002) Water Res 36(7):1783–1793
Ngomsik AF, Bee A, Siaugue JM, Talbot D, Cabuil V, Cote G (2009) J Hazard Mater 166(2):1043–1049
Wang Q, Li J, Chen C, Ren X, Hu J, Wang X (2011) Chem Eng J 174(1):126–133
Karkeh-abadi F, Saber-Samandari S, Saber-Samandari S (2016) J Hazard Mater 312:224–233
Pei A, Butchosa N, Berglund LA, Zhou Q (2013) Soft Matter 9(6):2047–2055
Kamel S, Hassan EM, El-Sakhawy M (2006) J Appl Polym Sci 100(1):329–334
Kalia S, Boufi S, Celli A, Kango s (2014) Colloid Polym Sci 292(1):5–31
Karim Z, Hakalahti M, Tammelin T, Mathew AP (2017) RSC Adv 7(9):5232–5241
Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Biomacromolecules 8(8):2485–2491
Narwade VN, Khairnar RS (2017) Bull Pol Acad Sci Tech Sci 65(2):131–137
Brundavanam RK, Poinern GE, Fawcett D (2013) Amer J Mater Sci 3(4):84–90
Narwade VN, Kokol V, Khairnar RS (2017) J Mater Sci Surf Eng 5(2):544–548
Mahto TK, Pandey SC, Chandra S, Kumar A (2015) RSC Adv 5(117):96313–96322
Tank KP, Sharma P, Kanchan DK, Joshi MJ, Cryst Res Technol 46(12):1309–1316
Mene RU, Mahabole MP, Khairnar RS (2011) Radiat Phys Chem 80(6):682–687
Jaušovec D, Vogrinčič R, Kokol V (2015) Carbohydr Polym 116:74–85
French AD, Cintrón MS (2013) Cellulose 20(1):583–588
Fang W, Zhang H, Yin J, Yang B, Zhang Y, Li J, Yao F (2016) Cryst Growth Des 16(3):1247–1255
Sofla MR, Brown RJ, Tsuzuki T, Rainey TJ (2016) Adv Nat Sci 7(3):035004–035009
Lin K, Pan J, Chen Y, Cheng R, Xu X (2009) J Hazard Mater 161(1):231–240
Lalhruaitluanga H, Jayaram K, Prasad MN, Kumar KK (2010) J Hazard Mater 175(1):311–318
Chien SH, Clayton WR(1980) Soil Sci Soc Am J 44(2):265–268
Macías-García A, Corzo MG, Domínguez MA, Franco MA, Naharro JM (2017) J Hazard Mater 328:46–55
Foo KY, Hameed BH (2010) Chem Eng J 156(1):2–10
Gedam AH, Dongre RS (2015) RSC Adv 5(67):54188–54201
Cawthray JF, Creagh AL, Haynes CA, Orvig C (2015) Inorg Chem 54(4):1440–1445
Narwade VN, Mahabole MP, Bogle KA, Khairnar RS (2014) Inter J Eng Sci Inno Tech3(3):324–329
Reichert J, Binner JG (1996) J Mater Sci 31(5):1231–1241
Acknowledgements
Authors are thankful to the Erasmus Mundus Project Euphrates (2013-2540/001-001-EMA2) for financial support.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Narwade, V.N., Khairnar, R.S. & Kokol, V. In Situ Synthesized Hydroxyapatite—Cellulose Nanofibrils as Biosorbents for Heavy Metal Ions Removal. J Polym Environ 26, 2130–2141 (2018). https://doi.org/10.1007/s10924-017-1101-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10924-017-1101-7
Keywords
- Cellulose nanofibrils
- Hydroxyapatite
- In situ synthesis
- Hybrid adsorbents
- Cobalt adsorption