Journal of Polymers and the Environment

, Volume 26, Issue 5, pp 2030–2038 | Cite as

Biocompatibility Through Cell Attachment and Cell Proliferation Studies of Nylon 6/Chitosan/Ha Electrospun Mats

  • Lubna Shahzadi
  • Rabia Zeeshan
  • Muhammad Yar
  • Saad Bin Qasim
  • Aqif Anwar Chaudhry
  • Ather Farooq Khan
  • Nawshad Muhammad
Original Paper


Novel cefixime loaded chitosan/HA/Nylon 6 electropsun mats were prepared with excellent swelling properties and were tested for cell attachment and cell proliferation. FTIR spectra shows that hydrogen bonding is developed between composite fibers, as pronounced shape change could be seen in amide I and II peaks. SEM analysis displayed completely different morphology (fiber diameters, general appearance, pore-size and shape) of composite fibers as compared to N6 fibers. Composite fibers showed high thermal stability in thermal gravimetric analysis. The ultimate tensile strength of fiber films was around 4.45 MPa. Both composite and Nylon 6 fibers demonstrated sustained drug release up to 24 h. Although the composite and control (Nylon 6) fibers, both, provided compatible favorable environment for the osteoblast cells, the composite fibers provided a better suited environment for the osteoblast cells differentiation and in parallel supporting cellular population also composite fibers exhibited superior swelling properties than the control which in turn complement the healing properties of wound dressings.


Electrospinning Chitosan Nylon Hydroxyapatite Composite fibers Cell proliferation 


  1. 1.
    Jayakumar R, Prabaharan M, Kumar PS, Nair S, Tamura H (2011) Biotechnol Adv 29(3):322CrossRefGoogle Scholar
  2. 2.
    Matsumoto H, Tanioka A (2011) Membranes 1(3):249CrossRefGoogle Scholar
  3. 3.
    Schneider X, Wang D, Kaplan J, Garlick, Egles C (2009) Acta Biomater 5(7):2570CrossRefGoogle Scholar
  4. 4.
    Song AA, Rane, Christman KL (2012) Acta Biomater 8(1):41CrossRefGoogle Scholar
  5. 5.
    Lagana G, Anderson EH (2010) J Nurse Practitioners 6(5):366CrossRefGoogle Scholar
  6. 6.
    Pal K, Banthia AK, Majumdar DK (2006) Biomed Mater 1(2):49CrossRefGoogle Scholar
  7. 7.
    Majno G (1991) The healing hand: man and wound in the ancient world. Harvard University Press, CambridgeGoogle Scholar
  8. 8.
    De Cicco F, Reverchon E, Adami R, Auriemma G, Russo P, Calabrese EC, Porta A, Aquino RP, Del P, Gaudio (2014) Carbohydr Polym 101:1216CrossRefGoogle Scholar
  9. 9.
    Boateng JS, Pawar HV, Tetteh J (2013) Int J Pharm 441(1):181CrossRefGoogle Scholar
  10. 10.
    Shalumon K, Anulekha K, Nair SV, Nair S, Chennazhi K, Jayakumar R (2011) Int J Biol Macromol 49(3):247CrossRefGoogle Scholar
  11. 11.
    Unnithan AR, Barakat NA, Pichiah PT, Gnanasekaran G, Nirmala R, Cha Y-S, Jung C-H, El-Newehy M, Kim HY (2012) Carbohydr Polym 90(4):1786CrossRefGoogle Scholar
  12. 12.
    Shahzad S, Yar M, Siddiqi SA, Mahmood N, Rauf A, Anwar MS, Afzaal S (2015) J Mater Sci 26(3):1Google Scholar
  13. 13.
    Venugopal J, Ramakrishna S (2010) Appl Biochem Biotechnol 125(3):147 Zahedi P, Rezaeian I, Ranaei-Siadat SO, Jafari SH, Supaphol P Polym Adv Technol 21(2):77Google Scholar
  14. 14.
    Wang C-Y, Zhang K-H, Fan C-Y, Mo X-M, Ruan H-J, Li F-F (2011) Acta Biomater 7(2):634CrossRefGoogle Scholar
  15. 15.
    El-Newehy MH, Al-Deyab SS, Kenawy E-R, Abdel-Megeed A (2011) J Nanomater 9:28Google Scholar
  16. 16.
    Pant HR, Bajgai MP, Nam KT, Seo YA, Pandeya DR, Hong ST, Kim HY (2011) J Hazard Mater 185(1):124CrossRefGoogle Scholar
  17. 17.
    Abdal-hay HR, Pant, Lim JK (2013) Eur Polym J 49(6):1314CrossRefGoogle Scholar
  18. 18.
    Pant HR, Kim HJ, Bhatt LR, Joshi MK, Kim EK, Kim JI, Abdal-hay A, Hui K, Kim CS (2013) Appl Surf Sci 285:538CrossRefGoogle Scholar
  19. 19.
    Agarwal V, Dougherty R (2001) Google PatentsGoogle Scholar
  20. 20.
    Kiziltas DJ, Gardner Y, Han, Yang H-S (2014) J Polym Environ 22(3):365CrossRefGoogle Scholar
  21. 21.
    Pant HR, Baek W-i, Nam K-T, Jeong I-S, Barakat NA, Kim HY (2011) Polymer 52(21):4851CrossRefGoogle Scholar
  22. 22.
    Pant HR, Kim CS (2013) Mater Lett 92, 90CrossRefGoogle Scholar
  23. 23.
    Farooq A, Yar M, Khan AS, Shahzadi L, Siddiqi SA, Mahmood N, Rauf A, Manzoor F, Chaudhry AA, ur Rehman I (2015) Mater Sci Eng C 56:104CrossRefGoogle Scholar
  24. 24.
    Islam S, Bhuiyan MAR., Islam MN (2016) J Polym EnvironGoogle Scholar
  25. 25.
    Paul W, Sharma CP (2004) Trends Biomater Artif Organs 18(1):18Google Scholar
  26. 26.
    Ginebra M-P, Traykova T, Planell J (2006) J Controll Release 113(2):102CrossRefGoogle Scholar
  27. 27.
    Zhou H, Lee J (2011) Acta Biomater 7(7), 2769CrossRefGoogle Scholar
  28. 28.
    McMillan, Young H, Int J STD AIDS 18(4):253Google Scholar
  29. 29.
    Arshad HM, Mohiuddin OA, Azmi MB (2012) J Appl Pharmaceut Sci 2(1):19Google Scholar
  30. 30.
    Reddy J, Kiran S, Duraival, Pragathi Kumar B (2013) Int J Curr Pharm Rev Res 3:110Google Scholar
  31. 31.
    Liu Y, Ma L, Gao C (2012) Mater Sci Eng C 32(8):2361CrossRefGoogle Scholar
  32. 32.
    Shahzad S, Yar M, Siddiqi SA, Mahmood N, Rauf A, Qureshi ZU, Anwar MS, Afzaal S (2015) J Mater Sci Mater Med 26(3):136CrossRefGoogle Scholar
  33. 33.
    Lee M, Wu BM, Dunn JC (2008) J Biomed Mater Res A 87(4):1010CrossRefGoogle Scholar
  34. 34.
    Khanna YP, Kuhn WP, Sichina WJ (1995) Macromolecules 28(8):2644CrossRefGoogle Scholar
  35. 35.
    Field K, Kerstein MD (1994) Am J Surg 167(1):S2CrossRefGoogle Scholar
  36. 36.
    Agrawal P (2013) National Institute of Technology, RourkelaGoogle Scholar
  37. 37.
    Uskokovic V, Desai TA (2014) J Pharm Sci 103(2):567CrossRefGoogle Scholar
  38. 38.
    Kenawy el R, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, Wnek GE (2002) J Control Release 81(1–2):57CrossRefGoogle Scholar
  39. 39.
    Zeng J, Xu X, Chen X, Liang Q, Bian X, Yang L, Jing X (2003) J Control Release 92(3):227CrossRefGoogle Scholar
  40. 40.
    Natu MV, de Sousa HC, Gil MH, Int J Pharm 397(1–2):50Google Scholar
  41. 41.
    Zamani M, Morshed M, Varshosaz J, Jannesari M (2010) Eur J Pharm Biopharm 75(2):179CrossRefGoogle Scholar
  42. 42.
    Williams GR, Chatterton NP, Nazir T, Yu DG, Zhu LM, Branford-White CJ, Ther Deliv 3(4):515Google Scholar
  43. 43.
    Garcia-Bennett A, Nees M, Fadeel B (2011) Biochem Pharmacol 81(8):976CrossRefGoogle Scholar
  44. 44.
    Ko F, Leung V, Hartwell R, Yang H, Ghahary A (2012) Nanofibre based biomaterials—bioactive nanofibres for wound healing applications. In: 2012 International conference on biomedical engineering and biotechnology, pp 389–392Google Scholar
  45. 45.
    Verreck G, Chun I, Rosenblatt J, Peeters J, Dijck AV, Mensch J, Noppe M, Brewster ME (2003) J Control Release 92(3):349CrossRefGoogle Scholar
  46. 46.
    Mi FL, Wu YB, Shyu SS, Schoung JY, Huang YB, Tsai YH, Hao JY (2002) J Biomed Mater Res 59(3):438CrossRefGoogle Scholar
  47. 47.
    Moore KA, Lemischka IR (2006) Science 311(5769):1880CrossRefGoogle Scholar
  48. 48.
    Peng H, Yin Z, Liu H, Chen X, Feng B, Yuan H, Su B, Ouyang H, Zhang Y (2012) Nanotechnology 23(48):485102CrossRefGoogle Scholar
  49. 49.
    Shafiq M, Jung Y, Kim SH (2015) J Biomed Mater Res A 103(8):2673CrossRefGoogle Scholar
  50. 50.
    Blackwood KA, McKean R, Canton I, Freeman CO, Franklin KL, Cole D, Brook I, Farthing P, Rimmer S, Haycock JW, Ryan AJ, MacNeil S (2008) Biomaterials 29(21):3091CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Lubna Shahzadi
    • 1
  • Rabia Zeeshan
    • 1
  • Muhammad Yar
    • 1
  • Saad Bin Qasim
    • 2
  • Aqif Anwar Chaudhry
    • 1
  • Ather Farooq Khan
    • 1
  • Nawshad Muhammad
    • 1
  1. 1.Interdisciplinary Research Centre in Biomedical MaterialsCOMSATS Institute of Information TechnologyLahorePakistan
  2. 2.Department of Material Science and Engineering, Kroto Research CentreUniversity of SheffieldSheffieldUK

Personalised recommendations