Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 5, pp 1998–2006 | Cite as

Cornstarch-Gelatin Films: Commercial Gelatin Versus Chromed Leather Waste Gelatin and Evaluation of Drying Conditions

  • Bianca Santinon Scopel
  • Maria Eduarda Ribeiro
  • Aline Dettmer
  • Camila Baldasso
Original Paper
  • 114 Downloads

Abstract

In this work, gelatin extracted from chromed leather waste (CLW) was used with cornstarch and glycerol to produce polymeric films. These films were compared with commercial gelatin ones. Gelatin from CLW presented a more pronounced plasticizer behavior than commercial gelatin. It may have occurred due to its lower molar mass, due to the presence of free amino acids from the partial degradation of the protein polypeptide chain during CLW gelatin extraction, and/or due to the presence of high salts content. The high drying temperature (40 °C) made the drying process faster than the starch retrogradation process. It resulted in the reduction of films crystallinity and tensile strength, and in the increase of elongation at break. It also increased equilibrium moisture content, as indicated by water sorption isotherms. FTIR spectra indicated that the absorption bands of cornstarch and CLW gelatin films are the same ones found for films of these materials when not combined, which indicates the presence of a system with phase separation.

Keywords

Hydrolysis Glycerol FTIR Mechanical properties Water sorption isotherms 

Notes

Acknowledgements

This study was realized thanks to the financial support of the Brazilian National Council for Technological and Scientific Development (CNPq), the Rio Grande do Sul State’s Research Support Foundation (FAPERGS) and the University of Caxias do Sul (UCS). Sponsors had no involvement in this study other than providing necessary resources for its execution.

References

  1. 1.
    Ribeiro I, Peças P, Henriques E (2013) Mater Des 51:300CrossRefGoogle Scholar
  2. 2.
    Álvarez-Chávez CR, Edwards S, Moure-Eraso R, Geiser K (2012) J Clean Prod 23:47CrossRefGoogle Scholar
  3. 3.
    Forum WE (2016) The New plastics economy—Rethinking the future of plastics. World Economic Forum, p 36Google Scholar
  4. 4.
    Gómez-Guillén MC, Pérez-Mateos M, Gómez-Estaca J, López-Caballero E, Giménez B, Montero P (2009) Trends Food Sci Technol 20:3CrossRefGoogle Scholar
  5. 5.
    Arvanitoyannis I, Psomiadou E, Nakayama A, Aiba S, Yamamoto N (1997) Food Chem 60:593CrossRefGoogle Scholar
  6. 6.
    Fakhoury FM, Silvia MM, Larissa CB, Yamashita F, Mei LHI, Queiroz FPC (2012) Food Sci Technol 49:149Google Scholar
  7. 7.
    Al-Hassan AA, Norziah MH (2012) Food Hydrocoll 26:108CrossRefGoogle Scholar
  8. 8.
    Ban W, Song J, Argyropoulos DS, Lucia LA (2006) J Appl Polym Sci 100:2542CrossRefGoogle Scholar
  9. 9.
    Jagannath JH, Nanjappa C, Gupta DKD, Bawa AS (2003) J Appl Polym Sci 88:64CrossRefGoogle Scholar
  10. 10.
    Martucci JF, Ruseckaite RA (2009) J Appl Polym Sci 112:2166CrossRefGoogle Scholar
  11. 11.
    Vieira MGA, da Silva MA, dos Santos LO, Beppu MM (2011) Eur Polym J 47:254CrossRefGoogle Scholar
  12. 12.
    Gennadios A (2002) Protein-based films and coatings. CRC Press, Boca RatonCrossRefGoogle Scholar
  13. 13.
    Wolf FA (2003) In: Aalbersberg WY et al (ed) Collagen and gelatin, Elsevier, Amsterdam, pp 219–269Google Scholar
  14. 14.
    Ocak B, Aslan A, Gürbüz G (2010) JALCA 106:232Google Scholar
  15. 15.
    Dettmer A, Santos RMO, Anjos PS, Gutterres M (2014) J AQEIC 65:93Google Scholar
  16. 16.
    Cabeza LF, Taylor MM, DiMaio GL, Brown E, Marmer W, Carrió R, Celma PJ, Cot J (1998) Waste Manage 18:211CrossRefGoogle Scholar
  17. 17.
    Mu C, Lin W, Zhang M, Zhu Q (2003) Waste Manage 23:835CrossRefGoogle Scholar
  18. 18.
    Jiang T, Zhang C, Qin F (2000) J Environ Sci 12:375Google Scholar
  19. 19.
    Veiga-Santos P, Oliveira LM, Cereda MP, Scamparini ARP (2007) Food Chem 103:255CrossRefGoogle Scholar
  20. 20.
    Acosta S, Chiralt A, Santamarina P, Rosello J, González-Martínez C, Cháfer M (2016) Food Hydrocoll 61:233–240CrossRefGoogle Scholar
  21. 21.
    Alves JS, dos Reis KC, Menezes EG, Pereira FV, Pereira J (2015) Carbohydr Polym 115:215CrossRefGoogle Scholar
  22. 22.
    Scopel BS, Lamers DL, Matos E, Baldasso C, Dettmer A (2016) JALCA 111:30Google Scholar
  23. 23.
    Martinéz C, Cuevas F (1989) Evaluación de la calidad culinaria y molinera del arroz: guía de estudio para ser usada como complemento de la unidad auditutorial sobre el mismo tema. CIAT, CaliGoogle Scholar
  24. 24.
    Laemmli UK (1970) Nature 227:680CrossRefGoogle Scholar
  25. 25.
    Weber FH, Collares-Queiroz FP, Chang YK (2009) Ciênc e Tecnol de Alim 29:748CrossRefGoogle Scholar
  26. 26.
    Shimazu AA, Mali S, Grossmann MVE (2007) Semina Ciênc Agr 28:79CrossRefGoogle Scholar
  27. 27.
    Mali S, Grossmann MVE, Yamashita F (2010) Semina Ciênc Agr 31:137CrossRefGoogle Scholar
  28. 28.
    Arvanitoyannis I, Nakayama A, Aiba S (1998) Carbohydr Polym 36:105CrossRefGoogle Scholar
  29. 29.
    Mali S, Sakanaka LS, Yamashita F, Grossmann MVE (2005) Carbohydr Polym 60:283CrossRefGoogle Scholar
  30. 30.
    Liu Z, Ge X, Lu Y, Dong S, Zhao Y, Zeng M (2012) Food Hydrocoll 26:311CrossRefGoogle Scholar
  31. 31.
    Selmin F, Franceschini I, Cupone IE, Minghetti P, Cilurzo F (2015) Carbohydr Polym 115:613CrossRefGoogle Scholar
  32. 32.
    Jiang X, Li H, Luo Y, Zhao Y, Hou L (2016) Int J Biol Macromol 82:223CrossRefGoogle Scholar
  33. 33.
    Zhang N, Liu X, Yu L, Shanks R, Petinaks E, Liu H (2013) Carbohydr Polym 95:649CrossRefGoogle Scholar
  34. 34.
    Zarski A, Ptak S, Siemion P, Kapusniak J (2016) Carbohydr Polym 137:657CrossRefGoogle Scholar
  35. 35.
    Kanmani P, Rhim JW (2014) Food Chem 148:162CrossRefGoogle Scholar
  36. 36.
    Nagarajan M, Benjakul S, Prodpran T, Songtipya P, Kishimura H (2012) Food Hydrocoll 29:389CrossRefGoogle Scholar
  37. 37.
    Prestes RC, Golunski SM, Toniazzo G, Kempka AP, Luccio MD (2013) Revista Brasileira de Produtos Agroindustriais 15:375CrossRefGoogle Scholar
  38. 38.
    Bet MR, Goissis G, Lacerda CA (2001) Biomacromolecules 2:1074CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Bianca Santinon Scopel
    • 1
  • Maria Eduarda Ribeiro
    • 2
  • Aline Dettmer
    • 3
  • Camila Baldasso
    • 4
  1. 1.Post-Graduation Program in Mining, Metallurgical and Materials EngineeringFederal University of Rio Grande do SulPorto AlegreBrazil
  2. 2.Environmental Engineering ProgramUniversity of Caxias do SulCaxias do SulBrazil
  3. 3.Chemical EngineeringUniversity of Passo FundoPasso FundoBrazil
  4. 4.Engineering of Processes and Technologies Post-Graduate ProgramUniversity of Caxias do SulCaxias do SulBrazil

Personalised recommendations