Journal of Polymers and the Environment

, Volume 26, Issue 5, pp 1979–1985 | Cite as

Fabrication of Polypyrrole/Chitosan Nanocomposite Aerogel Monolith for Removal of Cr(VI)

  • Jiayou Ji
  • Huizhi Xiong
  • Zhenni Zhu
  • Liang Li
  • Yineng Huang
  • Xianghua Yu
Original Paper


Three-dimensional polypyrrole/chitosan nanocomposite monoliths are fabricated by polymerization of pyrrole in chitosan aqueous solution. The static polymerization of pyrrole monomer and the cross-linking of chitosan by glutaraldehyde occur simultaneously, resulting in the self-assembly of polypyrrole/chitosan nanocomposite aerogel monolith. The addition of methyl orange and glutaraldehyde and the static reaction play key roles in the formation of the self-standing aerogel monolith. The as-prepared monolith with larger specific surface area exhibits much better adsorption capability for Cr(VI) removal in comparison with that prepared without the addition of glutaraldehyde. The adsorption process and adsorption isotherms are found to well follow the pseudo-second-order and Langmuir models, respectively. Furthermore, this polypyrrole/chitosan nanocomposite monolith is stable and recyclable. About 73.5% of the initial adsorption capability is kept after eight adsorption–desorption cycles. The polypyrrole/chitosan nanocomposite monolith can be a promising candidate for the efficient removal of Cr(VI).


Polypyrrole Chitosan Nanocomposite Monolith Cr(VI) removal 



The work was supported by Outstanding Youth Scientific Innovation Team of Colleges and Universities in Hubei Province (T201406), National Natural Science Foundation of China (51403167), Graduate Innovative Fund of Wuhan Institute of Technology (CX2016001), and Training Programs of Innovation and Entrepreneurship for Undergraduates (201610490019).


  1. 1.
    Bavio MA, Acosta GG, Kessler T (2014) J Power Sources 245:475CrossRefGoogle Scholar
  2. 2.
    Pernites RB, Ponnapati RR, Advincula RC (2011) Adv Mater 23:3207CrossRefGoogle Scholar
  3. 3.
    Yatsyshyn M, Saldan I, Milanese C, Makogon V, Zeffiro A, Bellani V, Lorenzo R, Cofrancesco P, Girella A, Dondi D, Reshetnyak O, Korniy S (2016) J Polym Environ 24:196CrossRefGoogle Scholar
  4. 4.
    Liu F, Yuan Y, Li L, Shang S, Yu X, Zhang Q, Jiang S, Wu Y (2015) Comp Part B Eng 69:232CrossRefGoogle Scholar
  5. 5.
    Kwon OS, Park E, Kweon OY, Park SJ, Jang J (2010) Talanta 82:1338CrossRefGoogle Scholar
  6. 6.
    Dubal DP, Lee SH, Kim JG, Kim WB, Lokhande CD (2012) J Mater Chem 22:3044CrossRefGoogle Scholar
  7. 7.
    Ansari R, Delavar AF (2010) J Polym Environ 18:202CrossRefGoogle Scholar
  8. 8.
    Liu SL, He K, Wu X, Luo XG, Li B (2015) RSC Adv 5:87266CrossRefGoogle Scholar
  9. 9.
    Samanta D, Meisera JL, Zare RN (2015) Nanoscale 7:9497CrossRefGoogle Scholar
  10. 10.
    Liu Z, Zhang X, Poyraz S, Surwade SP, Manohar SK (2010) J Am Chem Soc 132:13158CrossRefGoogle Scholar
  11. 11.
    Qi G, Huang L, Wang H (2012) Chem Commun 48:8246CrossRefGoogle Scholar
  12. 12.
    West R, Zeng X (2008) Langmuir 24:11076CrossRefGoogle Scholar
  13. 13.
    Temmer R, Kiefer R, Aabloo A, Tamm T (2013) J Mater Chem A 1:15216CrossRefGoogle Scholar
  14. 14.
    Ying S, Zheng W, Li B, She X, Huang H, Li L, Huang Z, Huang Y, Liu Z, Yu X (2016) Synth Met 218:50CrossRefGoogle Scholar
  15. 15.
    Brahim S, Narinesingh D, Guiseppi-Elie A (2002) Biosens Bioelectron 17:973CrossRefGoogle Scholar
  16. 16.
    Zhou S, Wang M, Chen X, Xu F (2015) ACS Sustain Chem Eng 3:3346CrossRefGoogle Scholar
  17. 17.
    Tuo X, Li B, Chen C, Huang Z, Huang H, Li L, Yu X, (2016) Synth Met 213:73CrossRefGoogle Scholar
  18. 18.
    Jiang T, Sui Z, Yang Q, Zhang X, Han B (2015) Soft Matter 11:3215CrossRefGoogle Scholar
  19. 19.
    Ji J, Yu X, Cheng P, Zhang Q, Du F, Li L, Shang S (2015) J Macromol Sci Part B Phys 54:1122CrossRefGoogle Scholar
  20. 20.
    Mekonnen BT, Ragothaman M, Kalirajan C, Palanisamy T (2016) RSC Adv 6:63071CrossRefGoogle Scholar
  21. 21.
    Shi Y, Pan L, Liu B, Wang Y, Cui Y, Bao Z, Yu G (2014) J Mater Chem A 2:6086CrossRefGoogle Scholar
  22. 22.
    Lu Y, He W, Cao T, Guo H, Zhang Y, Li Q, Shao Z, Cui Y, Zhang X (2014) Sci Rep 4:5792CrossRefGoogle Scholar
  23. 23.
    Wang Y, Shi Y, Pan L, Ding Y, Zhao Y, Li Y, Shi Y, Yu G (2015) Nano Lett 15:7736CrossRefGoogle Scholar
  24. 24.
    Wei D, Lin X, Li L, Shang S, Yuen MC, Yan G, Yu X (2013) Soft Matter 9:2832CrossRefGoogle Scholar
  25. 25.
    Dai T, Lu Y (2007) J Mater Chem 17:4797CrossRefGoogle Scholar
  26. 26.
    Zhang F, Xiao F, Dong ZH, Shi W (2013) Electrochim Acta 114:125CrossRefGoogle Scholar
  27. 27.
    Huang H, Wu J, Lin X, Li L, Shang S, Yuen MC, Yan G (2013) Carbohydr Polym 95:72CrossRefGoogle Scholar
  28. 28.
    Chauhan D, Jaiswal M, Sankararamakrishnan N (2012) Carbohydr Polym 88:670CrossRefGoogle Scholar
  29. 29.
    Afzal S, Samsudin EM, Julkapli NM, Abd Hamid SB (2016) Environ Sci Poll Res 23:23158CrossRefGoogle Scholar
  30. 30.
    Yun YH, Yun JW, Yoon SD, Byun HS (2016) Macromol Res 24:51CrossRefGoogle Scholar
  31. 31.
    Yusof AM, Malek N.A.N.N. (2009) J Hazard Mater 162:1019CrossRefGoogle Scholar
  32. 32.
    Wei C, German S, Basak S, Rajeshwar K (1993) J Electrochem Soc 140:60CrossRefGoogle Scholar
  33. 33.
    Ngah W, Teong LC, Hanafiah M (2011) Carbohydr Polym 83:1446CrossRefGoogle Scholar
  34. 34.
    Lei Y, Qian X, Shen J, An X (2012) Ind Eng Chem Res 51:10408CrossRefGoogle Scholar
  35. 35.
    Bhaumik M, Maity A, Srinivasu VV, Onyango MS (2012) Chem Eng J 181–182:323CrossRefGoogle Scholar
  36. 36.
    Karthik R, Meenakshi S (2015) Desalin Water Treat 56:1587CrossRefGoogle Scholar
  37. 37.
    Xiao Y, He L, Che J (2012) J Mater Chem 22:8076CrossRefGoogle Scholar
  38. 38.
    Marcasuzaa P, Reynaud S, Ehrenfeld F, Khoukh A, Desbrieres J (2010) Biomacromolecules 11:1684CrossRefGoogle Scholar
  39. 39.
    Yang X, Li L, Yan F (2010) Sens Actuators B Chem 145:495CrossRefGoogle Scholar
  40. 40.
    Yang X, Li L (2010) Synth Met 160:1365CrossRefGoogle Scholar
  41. 41.
    Kampalanonwat P, Supaphol P (2010) ACS Appl Mater Interfaces 2:3619CrossRefGoogle Scholar
  42. 42.
    Wang YQ, Zou BF, Gao T, Wu XP, Lou SY, Zhou SM (2012) J Mater Chem 22:9034CrossRefGoogle Scholar
  43. 43.
    Yao TJ, Cui TY, Wu J, Chen QZ, Lu SW, Sun KN (2011) Polym Chem 2:2893CrossRefGoogle Scholar
  44. 44.
    Li SK, Lu XF, Xue YP, Lei JY, Zheng T, Wang C (2012) PLoS ONE 7:e43328CrossRefGoogle Scholar
  45. 45.
    Bhaumik M, Maity A, Srinivasu VV, Onyango MS (2011) J Hazard Mater 190:381CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and EngineeringWuhan Institute of TechnologyWuhanPeople’s Republic of China
  2. 2.School of Physical Science and TechnologyYili Normal UniversityYiningChina

Personalised recommendations