Journal of Polymers and the Environment

, Volume 26, Issue 5, pp 1881–1890 | Cite as

Improving Water Resistance of Soy-Based Adhesive by Vegetable Tannin

  • Saman Ghahri
  • Behbood Mohebby
  • Antonio Pizzi
  • Ahmad Mirshokraie
  • Hamid Reza Mansouri
Original Paper

Abstract

In this research tannic acid was used to prepare soy-based adhesives for making plywood and fiber board. The different resin formulations were analyzed by Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and its derivative as a function of temperature (DTG) and Fourier Transform Infra-red (FTIR) spectroscopy. The results showed that the addition of tannic acid to soy-based adhesive decreased soy-based adhesive viscosity and its pH. The DSC analysis showed that the denaturation temperature of soy-based adhesives decrease by adding tannic acid. The TGA and DTG curves showed that the thermal degradation of soy flour starts above 146 °C. The FTIR spectroscopy results also showed that the soy flour amino acids appeared to react well with tannic acid. Furthermore, delamination and shear strength test results showed the good water resistance of plywood bonded with soy-based tannic acid-modified adhesive. The mechanical and physical properties such as MOR, MOE, IB, and water resistance of fiberboard were improved, by adding tannic acid to the soy-based adhesive.

Keywords

Bio-adhesive Thermal properties Cross-linking agent Delamination Mechanical properties 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    Pizzi A (2016) Wood products and green chemistry. Ann For Sci 73:185–203CrossRefGoogle Scholar
  2. 2.
    Raqueza JM, Deleglise M, Lacrampea MF, Krawczak P (2010) Thermosetting (bio)materials derived from renewable resources: a critical review. Prog Polym Sci 35:487–509CrossRefGoogle Scholar
  3. 3.
    Schwarzkopf M, Huang J, Li K (2010) A formaldehyde-free soy-based adhesive for making oriented strandboard. J Adhes 86:352–364CrossRefGoogle Scholar
  4. 4.
    Frihart CR, Satori HJ (2013) Soy flour dispersibility and performance as wood adhesive. Adhes Sci Technol 27:2043–2052CrossRefGoogle Scholar
  5. 5.
    Luo J, Li L, Luo J, Li X, Li K, Gao Q (2016) A high solid content bioadhesive derived from soybean meal and egg white: preparation and properties. J Polym Environ. doi: 10.1007/s10924-016-0875-3 Google Scholar
  6. 6.
    Hettiarachchy NS, Kalapathy U, Myers DJ (1995) Alkali-modified soy protein with improved adhesive and hydrophobic properties. J Am Oil Chem Soc 72:1461–1464CrossRefGoogle Scholar
  7. 7.
    Huang J, Li K (2008) A new soy flour-based adhesive for making interior type II plywood. J Am Oil Chem Soc 85:63–70CrossRefGoogle Scholar
  8. 8.
    Sun X, Bian K (1999) Shear strength and water resistance of modified soy protein adhesives. J Am Oil Chem Soc 76:977–980CrossRefGoogle Scholar
  9. 9.
    Eslah F, Jonoobi M, Faezipour M, Afsharpour M, Enayati AA (2016) Preparation and development of a chemically modified bio-adhesive derived from soybean flour protein. Int J Adhes Adhes 71:48–54CrossRefGoogle Scholar
  10. 10.
    Zhu D, Damodaran S (2014) Chemical phosphorylation improves the moisture resistance of soy flour-based wood adhesive. J Appl Polym Sci. doi: 10.1002/APP.40451 Google Scholar
  11. 11.
    Allen AJ, Marcink JJ, Wagler TA, Sosnowick AJ (2010) Investigations of the molecular interactions of soy-based adhesives. For Prod J 60:534–540Google Scholar
  12. 12.
    Wescott JM, Frihart CR, Traska AE (2006) High-soy-containing water-durable adhesives. J Adhes Sci Technol 20:859–873CrossRefGoogle Scholar
  13. 13.
    Tabarsa T, Jahanshahi SH, Ashori A (2011) Mechanical and physical properties of wheat straw boards bonded with a tannin modified phenol-formaldehyde adhesive. Compos Part B 42:176–180CrossRefGoogle Scholar
  14. 14.
    Luo J, Luo J, Li X, Li K, Qiang Gao Q, Li J (2016) Toughening improvement to a soybean meal-based bioadhesive using an interpenetrating acrylic emulsion network. J Mater Sci 51:9330–9341CrossRefGoogle Scholar
  15. 15.
    Widsten P, Heathcote C, Kandelbauer A, Guebitz G, Nyanhongo GS, Prasetyo EN, Kudanga T (2010) Enzymatic surface functionalisation of lignocellulosic materials with tannins for enhancing antibacterial properties. Process Biochem 45:1072–1081CrossRefGoogle Scholar
  16. 16.
    Bozic M, Gorgieva S, Kokol V (2012) Homogeneous and heterogeneous methods for laccase-mediated functionalization of chitosan by tannic acid and quercetin. Carbohydr Polym 89:854–864CrossRefGoogle Scholar
  17. 17.
    Aelenei N, Popa MI, Novac O, Lisa G, Balaita L (2009) Tannic acid incorporation in chitosan-based microparticles and in vitro controlled release. J Mater Sci 20:1095–1102Google Scholar
  18. 18.
    Van Buren JP, Robinson WB (1969) Formation of complexes between protein and tannic acid. J Agric Food Chem 17:772–777CrossRefGoogle Scholar
  19. 19.
    Oh H, Hoff JE, Armstrong GS, Haff LA (1980) Hydrophobic interaction in tannin-protein complexes. J Agric Food Chem 28:394–398CrossRefGoogle Scholar
  20. 20.
    Sionkowska A, Kaczmarek B, Lewandowska K (2014) Modification of collagen and chitosan mixtures by the addition of tannic acid. J Mol Liq 199:318–323CrossRefGoogle Scholar
  21. 21.
    Xu F, Weng B, Gilkerson R, Materon LA, Lozano K (2015) Development of tannic acid/chitosan/pullulan composite nano-fibers from aqueous solution for potential applications as wound dressing. Carbohydr Polym 115:16–24CrossRefGoogle Scholar
  22. 22.
    Rubentheren V, Ward TA, Chee CY, Tang CK (2015) Processing and analysis of chitosan nanocomposites reinforced with chitin whiskers and tannic acid as a crosslinker. Carbohydr Polym 115:379–387CrossRefGoogle Scholar
  23. 23.
    Koupantsis T, Pavlidou E, Paraskevopoulou A (2016) Glycerol and tannic acid as applied in the preparation of milk proteins—CMC complex coavervates for flavour encapsulation. Food Hydrocoll 57:62–71CrossRefGoogle Scholar
  24. 24.
    Gao Q, Shi Q, Li J, Liang K, Zhang X (2011) Soybean meal-based wood adhesives enhanced by modified polyacrylic acid solution. Bioresources 7:946–956Google Scholar
  25. 25.
    Wang WH, Li XP, Zhang XQ (2008) A soy-based adhesive from basic modification. Pigment Resin Technol 37:93–97CrossRefGoogle Scholar
  26. 26.
    Tian K, Porter D, Yao J, Shao ZH, Chen X (2010) Kinetics of thermally-induced conformational transitions in soybean protein films. Polymer 51:2410–2416.CrossRefGoogle Scholar
  27. 27.
    Schmidt V, Soldi V (2006) Influence of polycaprolactone-triol addition on thermal stability of soy protein isolate based films. Polym Degrad Stab 91:3124–3130.CrossRefGoogle Scholar
  28. 28.
    Nanda PK, Rao KK, Nayak PL (2007) Biodegradable polymers. XI. Spectral, thermal, morphological and biodegradability properties of environment-friendly green plastics of soy protein modified with thiosemicarbazide. J Appl Polym Sci 103:3134–3142CrossRefGoogle Scholar
  29. 29.
    Kumar R, Choudhary V, Mishra S, Varma IK (2004) Enzymatically-modified soy protein part 2: adhesion behavior. J Adhes Sci Technol 18:261–273CrossRefGoogle Scholar
  30. 30.
    Su JF, Huang Z, Yuan XY, Wang XY, Li M (2010) Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions. Carbohydr Polym 79:145–153CrossRefGoogle Scholar
  31. 31.
    Pantoja-Castroa MA, González-Rodrígueza H (2012) Study by infrared spectroscopy and thermogravimetric analysis of tannins and tannic acid. Rev Latinoam Quím 39:107–112Google Scholar
  32. 32.
    Socrates G (2004) Infrared and raman characteristics group frequencies. John Wiley & SonsGoogle Scholar
  33. 33.
    Silverstein RM, Webster FX, Kiemle DJ, Bryce DL (2014) Spectrometric identification of organic compounds. John Wiley & SonsGoogle Scholar
  34. 34.
    Stuart BH (2005) Experimental methods in infrared spectroscopy: fundamentals and applications. Wiley, ChichesterGoogle Scholar
  35. 35.
    Manivannan M, Rajendran S (2011) Investigation of inhibitive action of urea- zn2+ system in the corrosion control of carbon steel in sea water. Int J Eng Sci Technol 3:8048–8060Google Scholar
  36. 36.
    Keuleers R, Desseyn HO, Rousseau B, Van Alsenoy C (1999) Vibrational analysis of urea. J Phys Chem 103:4621–4630CrossRefGoogle Scholar
  37. 37.
    Charlton AJ, Baxter NJ, Lokmankhan M, Moir AJ, Haslam E, Davies AP, Williamson MP (2002) Polyphenol/peptide binding and precipitation. J Agric Food Chem 50:1593–1601CrossRefGoogle Scholar
  38. 38.
    Ghahri S, Pizzi A, Mohebby B, Mirshokraie A, Mansouri HR (2016) Soy-based, tannin-modified plywood adhesives. J Adhes. doi: 10.1080/00218464.2016.1258310 Google Scholar
  39. 39.
    Guang-Heng W, An-ning Z, Xiao-Bing H (2006) Effect of coal filler on the properties of soy protein plastics. J Appl Polym Sci 102:3134–3143CrossRefGoogle Scholar
  40. 40.
    Schmidt V, Giacomelli C, Soldi V (2005) Thermal stability of films formed by soy protein Isolate sodium dodecyl sulfate. Polym Degrad Stab 87:25–31CrossRefGoogle Scholar
  41. 41.
    Jones JM, Rollinson AN (2013) Thermogravimetric evolved gas analysis of urea and urea solutions with nickel alumina catalyst. Thermochim Acta 565:39–45CrossRefGoogle Scholar
  42. 42.
    Ma W, Waffo-Teguo P, Jourdes M, Li H, Teissedre PL (2016) A review on astringency and bitterness perception of tannins in wine. PLoS ONE 11:1–14. doi: 10.1371/journal.pone.0161095
  43. 43.
    Frihart CR, Brikeland MJ (2014) Soy-based chemicals and materials. ACS Symp Ser 1178:167–192Google Scholar
  44. 44.
    Li X, Li Y, Zhong Z, Wang D, Ratto JA, Sheng K, Sun XS (2009) Mechanical and water soaking properties of medium density fiberboard with wood fiber and soybean protein adhesive. Bioresour Technol 100:3556–3562CrossRefGoogle Scholar
  45. 45.
    Zhang Y, Zhu W, Lu Y, Gao Z, Gu J (2013) Water-resistant soybean adhesive for wood binder employing combinations of caustic degradation, nano-modification, and chemical crosslinking. BioResources 8:1283–1291Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Saman Ghahri
    • 1
  • Behbood Mohebby
    • 1
  • Antonio Pizzi
    • 2
  • Ahmad Mirshokraie
    • 3
  • Hamid Reza Mansouri
    • 4
  1. 1.Department of Wood and Paper SciencesTarbiat Modares UniversityTehranIran
  2. 2.LERMABUniversity of LorraineEpinalFrance
  3. 3.Department of chemistryPayame Noor UniversityTehranIran
  4. 4.Department of Wood and Paper SciencesUniversity of ZabolZabolIran

Personalised recommendations