Journal of Polymers and the Environment

, Volume 26, Issue 5, pp 1869–1880 | Cite as

Nanocomposites of Waterborne Polyurethane Reinforced with Cellulose Nanocrystals from Sisal Fibres

  • G. Mondragon
  • A. Santamaria-Echart
  • M. E. V. Hormaiztegui
  • A. Arbelaiz
  • C. Peña-Rodriguez
  • V. Mucci
  • M. Corcuera
  • M. I. Aranguren
  • A. EceizaEmail author
Original Paper


Cellulose nanocrystals (CNC) were isolated from sisal fibres and were incorporated in the form of an aqueous suspension to a waterborne polyurethane (WBPU) synthesized from components derived from natural sources using an aliphatic diisocyanate. Transparent nanocomposite films with different CNC contents were prepared using a casting method. The morphology, thermal behaviour and mechanical properties of the nanocomposite films were characterized. Homogeneous distribution of CNC in the WBPU, even at high CNC contents was observed, resulting in an increase of 100% in modulus for systems with 5 and 10 wt% of CNC, with high elongations around 650%.


Sisal fibres Castor oil Cellulose nanocrystals Waterborne polyurethanes Nanocomposite 



Financial support from the Basque Country Government in the frame of Grupos Consolidados (IT-776-13) and Elkartek Program (KK-2016/00043), from Spanish Ministry of Economy and Competitiveness (MINECO) (MAT2013-43076-R) and from European Union-FP7-PIRSES-GA-2012-BIOPURFIL program is gratefully acknowledged. G. Mondragon wishes to acknowledge the Basque Government for his PhD Grant (BFI-2010-210). Moreover, technical support provided by SGIker unit from the University of the Basque Country is also gratefully acknowledged. The Argentinian coauthors wish to acknowledge the support of the National Agency for the Promotion of Science and Technology of Argentina (Project PICT 2013-1535), the National Research Council of Argentina, CONICET (PIP 00866) and the Universidad Nacional de Mar del Plata (15/G430-ING436/15).


  1. 1.
    Saralegi A, Rueda L, Fernandez-d’Arlas B, Mondragon I, Eceiza A, Corcuera MA (2012) Thermoplastic polyurethanes from renewable resources: effect of soft segment chemical structure and molecular weight on morphology and final properties. Polym Int 62:106–115CrossRefGoogle Scholar
  2. 2.
    Mondragon G, Fernandes S, Retegi A, Peña C, Algar I, Eceiza A, Arbelaiz A (2014) A common strategy to extracting cellulose nanoentities from different plants. Ind Crop Prod 55:140–148CrossRefGoogle Scholar
  3. 3.
    Gogoi S, Karak N (2014) Biobased biodegradable waterborne hyperbranched polyurethane as an ecofriendly sustainable material. ACS Sustain Chem Eng 2:2730–2738CrossRefGoogle Scholar
  4. 4.
    Mondragon G, Peña-Rodriguez C, González A, Eceiza A, Arbelaiz A (2015) Bionanocomposites based on gelatin matrix and nanocellulose. Eur Polym J 62:1–9CrossRefGoogle Scholar
  5. 5.
    Madbouly SA, Xia Y, Kessler MR (2013) Rheological behavior of environmentally friendly castor oil-based waterborne polyurethane dispersions. ACS 46:4606–4616Google Scholar
  6. 6.
    Noble K-L (1997) Waterborne polyurethanes. Prog Org Coat 32:131–136CrossRefGoogle Scholar
  7. 7.
    Nelson AM, Long TE (2014) Synthesis, properties, and applications of ion containing polyurethane segmented copolymers. Macromol Chem Phys 215:2161–2174CrossRefGoogle Scholar
  8. 8.
    Jaudouin O, Robin JJ, Lopez-Cuesta JM, Perrin D, Imbert C (2012) Ionomer-based polyurethanes: a comparative study of properties and applications. Polym Int 61:495–510CrossRefGoogle Scholar
  9. 9.
    Santamaria-Echart A, Arbelaiz A, Saralegi A, Fernández-d’Arlas B, Eceiza A, Corcuera MA (2015) Relationship between reagents molar ratio and dispersion stability and film properties of waterborne polyurethanes. Coll Surf A 482:554–561CrossRefGoogle Scholar
  10. 10.
    Jiang X, Li J, Ding M, Tan H, Ling Q, Zhong Y, Fu Q (2007) Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly(e-caprolactone) and poly(ethylene glycol) as soft segment. Eur Polym J 43:1838–1846CrossRefGoogle Scholar
  11. 11.
    Gao Z, Peng J, Zhong T, Sun J, Wang X, Yue C (2012) Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals. Carbohydr Polym 87:2068–2075CrossRefGoogle Scholar
  12. 12.
    Remya VR, Patil D, Abitha VK, Rane AV, Mishra RK (2016) Biobased materials for polyurethane dispersions. Chem Int 2:158–167Google Scholar
  13. 13.
    Howarth GA (2003) Polyurethanes, polyurethane dispersions and polyureas: Past, present and future. Surf Coat Int Part B 86:111–118CrossRefGoogle Scholar
  14. 14.
    Meng QB, Lee S-L, Nah C, Lee Y-S (2009) Preparation of waterborne polyurethanes using an amphiphilic diol for breathable waterproof textile coatings. Prog Org Coat 66:382–386CrossRefGoogle Scholar
  15. 15.
    Pan H, Chen D (2009) Waterborne polyurethane coating and its new applications in plush finishing. Text Res J 79:687–693CrossRefGoogle Scholar
  16. 16.
    Hu J, Peng K, Guo J, Shan D, Kim GB, Li Q, Gerhard E, Zhu L, Tu W, Lv W, Hickner MA, Yang J (2016) Click cross-linking-improved waterborne polymers for environment-friendly coatings and adhesives. ACS Appl Mater Interfaces. doi: 10.1021/acsami.6b02131 Google Scholar
  17. 17.
    Mao H, Wang Y, Yao D, Wang C, Sun S (2016) Synthesis of blocked waterborne polyurethane polymeric dyes with tailored molecular weight: thermal, rheological and printing properties. RSC Adv 6:56831–56838CrossRefGoogle Scholar
  18. 18.
    Orgilés-Calpena E, Arán-Aís F, Torró-Palau AM, Orgilés-Barceló C, Martín-Martínez JM (2009) Effect of annealing on the properties of waterborne polyurethane adhesive containing urethane-based thickener. Int J Adhes Adhes 29:774–780CrossRefGoogle Scholar
  19. 19.
    Lu Y, Larock RC (2008) Soybean-oil-based waterborne polyurethane dispersions: Effects of polyol functionality and hard segment content on properties. Biomacromolecules 9:3332–3340CrossRefGoogle Scholar
  20. 20.
    Gaikwad MS, Gite VV, Mahulikar PP, Hundiwale DG, Yemul OS (2015) Eco-friendly polyurethane coatings from cottonseed and karanja oil. Prog Org Coat 86:164–172CrossRefGoogle Scholar
  21. 21.
    Chen R, Zhang C, Kessler MR (2014) Anionic waterborne polyurethane dispersion from bio-based ionic segment. RSC Adv 4:35476–35483CrossRefGoogle Scholar
  22. 22.
    Janik H, Marzec M (2015) A review: fabrication of porous polyurethane scaffolds. Mater Sci Eng C 48:586–591CrossRefGoogle Scholar
  23. 23.
    Xie D-Y, Song F, Zhang M, Wang X-L, Wang Y-Z (2016) Roles of soft segment length in structure and property of soy protein isolate/waterborne polyurethane blend films. Ind Eng Chem Res 55:1229–1235CrossRefGoogle Scholar
  24. 24.
    Wu H, Li Z, Bai L, Zhu L, Gu J (2015) Research on the blocking reaction kinetics and mechanism of aqueous polyurethane micelles blocked by 2,4,6-trichlorophenol. J Macromol Sci Part A 52:847–855CrossRefGoogle Scholar
  25. 25.
    Auad ML, Contos VS, Nutt S, Aranguren MI, Marcovich NE (2008) Characterization of nanocellulose reinforced shape memory polyurethanes. Polym Int 57:651–659CrossRefGoogle Scholar
  26. 26.
    Lin S, Huang J, Chang PR, Wei S, Xu Y, Zhang Q (2013) Structure and mechanical properties of new biomass-based nanocomposite: castor oil-based polyurethane reinforced with acetylated cellulose nanocrystal. Carbohydr Polym 95:91–99CrossRefGoogle Scholar
  27. 27.
    Pei A, Malho J-M, Ruokolainen J, Zhou Q, Berglund LA (2011) Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 44:4422–4427CrossRefGoogle Scholar
  28. 28.
    Benhamou K, Kaddami H, Magnin A, Dufresne A, Ahmad A (2015) Bio-based polyurethane reinforced with cellulose nanofibers: a comprehensive investigation on the effect of interface. Carbohydr Polym 122:202–211CrossRefGoogle Scholar
  29. 29.
    Li Y, Ragauskas AJ (2011) Cellulose nano whiskers as a reinforcing filler in polyurethanes In: Reddy B (ed) Advances in diverse industrial applications of nanocomposites, InTech, Rijeka. ISBN: 978-953-307-202-9Google Scholar
  30. 30.
    Vincent JFV (1999) From cellulose to cell. J Exp Biol 202:3263–3268Google Scholar
  31. 31.
    Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33CrossRefGoogle Scholar
  32. 32.
    Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges. J Polym Sci Part B 52:791–806CrossRefGoogle Scholar
  33. 33.
    Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRefGoogle Scholar
  34. 34.
    Santamaria-Echart A, Ugarte L, Arbelaiz A, Gabilondo N, Corcuera MA, Eceiza A (2016) Two different incorporation routes of cellulose nanocrystals in waterborne polyurethane nanocomposites. Eur Polym J 76:99–109CrossRefGoogle Scholar
  35. 35.
    Cao X, Dong H, Li CM (2007) New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8:899–904CrossRefGoogle Scholar
  36. 36.
    Santamaria-Echart A, Ugarte L, García-Astrain C, Arbelaiz A, Corcuera MA, Eceiza A (2016) Cellulose nanocrystals reinforced environmentally-friendly waterborne polyurethane nanocomposites. Carbohydr Polym 151:1203–1209CrossRefGoogle Scholar
  37. 37.
    Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6:3160–3165CrossRefGoogle Scholar
  38. 38.
    Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432CrossRefGoogle Scholar
  39. 39.
    de Rodriguez NLG, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270CrossRefGoogle Scholar
  40. 40.
    Lojewska J, Miśkowiec P, Łojewski T, Proniewicz LM (2005) Cellulose oxidative and hydrolytic degradation: in situ FTIR approach. Polym Degrad Stab 88:512–520CrossRefGoogle Scholar
  41. 41.
    Alemdar A, Sain M (2008) Isolation and characterization of nanofibres from agricultural residues – Wheat straw and soy hulls. Bioresour Technol 99:1664–1671CrossRefGoogle Scholar
  42. 42.
    Corcuera MA, Rueda L, Saralegui A, Martın MD, Fernandez-d’Arlas B, Mondragon I, Eceiza A (2011) Effect of diisocyanate structure on the properties and microstructure of polyurethanes based on polyols derived from renewable resources. J Appl Polym Sci 122:3677–3685CrossRefGoogle Scholar
  43. 43.
    Wik VM, Aranguren MI, Mosiewicki MA (2010) Castor oil-based polyurethanes containing cellulose nanocrystals. Polym Eng Sci 51:1389–1396CrossRefGoogle Scholar
  44. 44.
    Rueda-Larraz L, Fernández d’Arlas B, Tercjak A, Ribes A, Mondragon I, Eceiza A (2009) Synthesis and microstructure-mechanical property relationships of segmented polyurethanes based on a PCL-PTHF-PCL block copolymer as soft segment. Eur Polym J 45:2096–2109CrossRefGoogle Scholar
  45. 45.
    Saralegi A, Gonzalez ML, Valea A, Eceiza A, Corcuera MA (2014) The role of cellulose nanocrystals in the improvement of the shape-memory properties of castor oil-based segmented thermoplastic polyurethanes. Compos Sci Technol 92:27–33CrossRefGoogle Scholar
  46. 46.
    Hormaiztegui MEV, Mucci VL, Santamaria-Echart A, Corcuera MA, Eceiza A, Aranguren MI (2016) Waterborne polyurethane nanocomposites based on vegetable oil and microfibrillated cellulose. J Appl Polym Sci 133:44207CrossRefGoogle Scholar
  47. 47.
    Wu Q, Henriksson M, Liu X, Berglund LA (2007) A high strength nanocomposite based on microcrystalline cellulose and polyurethane. Biomacromolecules 8:3687–3692CrossRefGoogle Scholar
  48. 48.
    Saralegi A, Rueda L, Martin L, Arbelaiz A, Eceiza A, Corcuera MA (2013) From elastomeric to rigid polyurethane/cellulose nanocrystal bionanocomposites. Compos Sci Technol 88:39–47CrossRefGoogle Scholar
  49. 49.
    Marcovich NE, Auad ML, Bellesi NE, Nutt SR, Aranguren MI (2006) Cellulose micro/nanocrystals reinforced polyurethane. J Mater Res 21:870–881CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.′Materials + Technologies’ Group, Chemical & Environmental Engineering Dep., Engineering College of GipuzkoaUniversity of the Basque Country UPV/EHUDonostia-San SebastiánSpain
  2. 2.′Ecomaterials’ Division, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA)Universidad Nacional de Mar del Plata (UNMdP) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Mar del PlataArgentina

Personalised recommendations