Journal of Polymers and the Environment

, Volume 26, Issue 5, pp 1844–1853 | Cite as

Thermal and Flame Retardancy Behavior of Oil Palm Based Epoxy Nanocomposites

  • N. Saba
  • M. T. Paridah
  • M. Jawaid
  • O. Y. Alothman
Original Paper


The aim of present study was to investigate the thermal properties and flame retardancy behavior of flame retardant (FR) epoxy nanocomposites from chemically treated (bromine water and tin chloride) oil palm empty fruit bunch (OPEFB) nano filler at different filler loading (1, 3, 5%). Thermal properties were evaluated through thermogravimetry analyzer, derivative thermogravimetry and differential scanning calorimetry. FR properties of nanocomposites are evaluated through UL-94 vertical burning test and limiting oxygen index (LOI). The functional group analysis of all composites was made by FTIR spectroscopy. Thermal analysis shows that degradation temperature of epoxy composites shifts from 370 to 410 °C and char yield also increases for 3% loading. Furthermore LOI value of 29% and UL-94 rating of V-0 with no flame dripping and cotton ignition, revealed that 3% oil palm nano filler filled epoxy nanocomposites display satisfactory flame retardancy. The superior flame retardancy of epoxy nanocomposites are attributed to the chemical reactions occurred in the gaseous phases and the profound synergistic flame retardation effect of tin with bromine in the treated nano OPEFB filler. All the epoxy nanocomposites displayed almost similar FTIR spectra with the characteristics metal-halogen bond supporting the synergism. Homogeneous dispersion of 3% oil palm nano filler act as highly effective combustion chain terminating agent compared with 1 and 5% nano OPEFB/epoxy nanocomposites.


Epoxy Oil palm nano filler Nanocomposites Thermal properties Flame retardants 



We are thankful to Ministry of Higher Education for Providing HICoE Grant No: 6369108 to INTROP, UPM for doing this work. The authors also extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research through ISPP#0011.


  1. 1.
    Saba N, Jawaid M, Paridah M, Al-othman O (2016) Polym Adv Technol 27:577–590CrossRefGoogle Scholar
  2. 2.
    Alaee M, Arias P, Sjödin A, Bergman à (2003) Environ Int 29(6):683–689CrossRefGoogle Scholar
  3. 3.
    Horrocks A, Kandola B, Davies P, Zhang S, Padbury S (2005) Polym Degrad Stab 88(1):3–12CrossRefGoogle Scholar
  4. 4.
    Sroka J, Rybak A, Sekula R, Sitarz MJ (2016) Polym Environ 24(4):298–308CrossRefGoogle Scholar
  5. 5.
    Sen AK, Kumar S (2010) J Therm Anal Calorim 101(1):265–271CrossRefGoogle Scholar
  6. 6.
    Srivastava R, Srivastava D (2015) J Polym Environ 23(3):283–293CrossRefGoogle Scholar
  7. 7.
    Jeencham R, Suppakarn N, Jarukumjorn K (2014) Compos B 56:249–253CrossRefGoogle Scholar
  8. 8.
    Zotti A, Borriello A, Ricciardi M, Antonucci V, Giordano M, Zarrelli M (2015) Compos B 73:139–148CrossRefGoogle Scholar
  9. 9.
    Kandola B, Horrocks A, Myler P, Blair D (2003) Compos A 34(9):863–873CrossRefGoogle Scholar
  10. 10.
    Rakotomalala M, Wagner S, Döring M (2010) Materials 3(8):4300–4327CrossRefGoogle Scholar
  11. 11.
    Ahmetli G, Deveci H, Soydal U, Seker A, Kurbanli R (2012) Prog Org Coat 75(1):97–105CrossRefGoogle Scholar
  12. 12.
    Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta J-M, Dubois P (2009) Mater Sci Eng 63(3):100–125CrossRefGoogle Scholar
  13. 13.
    Saba N, Jawaid M, Alothman OY, Paridah M, Hassan A (2015) J Reinf Plast Compos. doi: 10.1177/0731684415618459 Google Scholar
  14. 14.
    Sponton M, Mercado L, Ronda J, Galia M, Cadiz V (2008) Polym Degrad Stab 93(11):2025–2031CrossRefGoogle Scholar
  15. 15.
    Zhang M, Buekens A, Li X (2016) J Hazard Mater 304:26–39CrossRefGoogle Scholar
  16. 16.
    Tue NM, Goto A, Takahashi S, Itai T, Asante KA, Kunisue T, Tanabe S (2016) J Hazard Mater 302:151–157CrossRefGoogle Scholar
  17. 17.
    Yang SY, Lin WN, Huang YL, Tien HW, Wang JY, Ma CCM, Li SM, Wang YS (2011) Carbon 49(3):793–803CrossRefGoogle Scholar
  18. 18.
    Oliwa R, Heneczkowski M, Oleksy M, Galina H (2016) Compos B 95:1–8CrossRefGoogle Scholar
  19. 19.
    Atkinson P, Haines P, Skinner G (2001) Polym Degrad Stab 71(3):351–360CrossRefGoogle Scholar
  20. 20.
    Grexa O, Poutch F, Manikova D, Martvonova H, Bartekova A (2003) Polym Degrad Stab 82(2):373–377CrossRefGoogle Scholar
  21. 21.
    Nohales A, Muñoz-Espí R, Félix P, Gómez CM (2011) J Appl Polym Sci 119(1):539–547CrossRefGoogle Scholar
  22. 22.
    Chen C, Morgan AB (2009) Polymer 50(26):6265–6273CrossRefGoogle Scholar
  23. 23.
    Lazko J, Landercy N, Laoutid F, Dangreau L, Huguet M, Talon O (2013) Polym Degrad Stab 98(5):1043–1051CrossRefGoogle Scholar
  24. 24.
    Reti C, Casetta M, Duquesne S, Delobel R, Soulestin J, Bourbigot S (2009) J Eng Fibers Fabr 4(2):33e39Google Scholar
  25. 25.
    Wang X, Song L, Pornwannchai W, Hu Y, Kandola B (2013) Compos A S53:88–96CrossRefGoogle Scholar
  26. 26.
    Lee CH, Salit MS, Hassan MR (2014) Adv Mater Sci. doi: 10.1155/2014/514036 Google Scholar
  27. 27.
    Saba N, Tahir PM, Jawaid M (2014) Polymers 6(8):2247–2273CrossRefGoogle Scholar
  28. 28.
    Saba N, Paridah TM, Abdan K, Ibrahim NA (2015) BioResources 10(3):4530–4543CrossRefGoogle Scholar
  29. 29.
    Ávila H, Rodríguez-Páez J (2009) J Non-Cryst Solids 355(14):885–890CrossRefGoogle Scholar
  30. 30.
    Chakraborty A, Sain M, Kortschot M (2005) Holzforschung 59(1):102–107CrossRefGoogle Scholar
  31. 31.
    Mngomezulu ME, John MJ, Jacobs V, Luyt AS (2014) Carbohyd Polym 111:149–182CrossRefGoogle Scholar
  32. 32.
    Dong Y, Umer R, Lau AKT (2015) Fillers and reinforcements for advanced nanocomposites. Woodhead Publishing, CambridgeGoogle Scholar
  33. 33.
    Khalil HA, Firoozian P, Bakare I, Akil HM, Noor AM (2010) Mater Des 31(7):3419–3425CrossRefGoogle Scholar
  34. 34.
    Sahoo SK, Mohanty S, Nayak SK (2015) Prog Org Coat 88:263–271CrossRefGoogle Scholar
  35. 35.
    Afzal A, Siddiqi HM, Iqbal N, Ahmad Z (2013) J Therm Anal Calorim 111(1):247–252CrossRefGoogle Scholar
  36. 36.
    Zhou Y, Wu P, Cheng Z, Ingram J, Jeelani S (2008) Express Polym Lett 2 (1):40–48CrossRefGoogle Scholar
  37. 37.
    Zabihi O, Omrani A, Rostami AA (2012) J Therm Anal Calorim 108(3):1251–1260CrossRefGoogle Scholar
  38. 38.
    Abdul Khalil HPS, Fizree HM, Bhat AH, Jawaid M, Abdullah CK (2013) Compos B 53:324–333CrossRefGoogle Scholar
  39. 39.
    Asiri AM, Hussein MA, Abu-Zied BM, Hermas A-EA (2013) Compos B 51:11–18CrossRefGoogle Scholar
  40. 40.
    Saba N, Tahir PM, Abdan K, Ibrahim NA (2016) BioResources 11 (3):7721–7736CrossRefGoogle Scholar
  41. 41.
    Lee S-E, Cho S, Lee Y-S (2014) Carbon Lett 15(1):32–37CrossRefGoogle Scholar
  42. 42.
    Sun T, Fan H, Wang Z, Liu X, Wu Z (2015) Mater Des 87:10–16CrossRefGoogle Scholar
  43. 43.
    Xu S, Girouard N, Schueneman G, Shofner ML, Meredith JC (2013) Polymer 54(24):6589–6598CrossRefGoogle Scholar
  44. 44.
    Horrocks A (2009) J Fire Sci 27:495CrossRefGoogle Scholar
  45. 45.
    Horrocks A, Smart G, Kandola B, Price D (2012) Polym Degrad Stab 97(4):645–652CrossRefGoogle Scholar
  46. 46.
    Qu H, Wu W, Zheng Y, Xie J, Xu J (2011) Fire Saf J 46 (7):462–467CrossRefGoogle Scholar
  47. 47.
    Taguet A, Cassagnau P, Lopez-Cuesta J-M (2014) Prog Polym Sci 39(8):1526–1563CrossRefGoogle Scholar
  48. 48.
    Marquis DM, Guillaume E, Chivas-Joly C (2005) In: Cuppolett J (ed) Nanocomposites and Polymers with analytical methods. Intech, Czech, pp 261–284Google Scholar
  49. 49.
    Suresh S, Saravanan P, Jayamoorthy K, Kumar SA, Karthikeyan S (2016) Mater Sci Eng C 64:286–292CrossRefGoogle Scholar
  50. 50.
    González MG, Cabanelas JC, Baselga J (2012) In: Theophile T (ed) Infrared spectroscopy - materials science, engineering and technology. Intech, Czech, pp 261–284Google Scholar
  51. 51.
    Cecen V, Seki Y, Sarikanat M, Tavman IH (2008) J Appl Polym Sci 108(4):2163–2170CrossRefGoogle Scholar
  52. 52.
    Chan MI, Lau KT, Wong T, Cardona F (2011) Appl Surf Sci 258(2):860–864CrossRefGoogle Scholar
  53. 53.
    Nie W, Liu J, LIu W, Wang J, Tang T (2015) Polym Degrad Stab 111:247–256CrossRefGoogle Scholar
  54. 54.
    Meng T, Gao X, Zhang J, Yuan J, Zhang Y, He J (2009) Polymer 50(2):447–454CrossRefGoogle Scholar
  55. 55.
    Rayung M, Ibrahim NA, Zainuddin N, Saad WZ, Razak NIA, Chieng BW (2014) Int J Mol Sci 15 (8):14728–14742CrossRefGoogle Scholar
  56. 56.
    Li P, Zheng Y, Li M, Shi T, Li D, Zhang A (2016) Mater Des 89:653–659CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP)Universiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of Chemical Engineering, College of EngineeringKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations