Journal of Polymers and the Environment

, Volume 26, Issue 5, pp 1804–1817 | Cite as

Synthesis of CS/PVA Biodegradable Composite Nanofibers as a Microporous Material with Well Controllable Procedure Through Electrospinning

  • Ghasem Sargazi
  • Daryoush Afzali
  • Ali Mostafavi
  • S. Yousef Ebrahimipour
Original Paper


In this study, we have showed a facile route for fabrication of a novel microporous material based on chitosan (CS) and poly(vinyl alcohol) (PVA) biodegradable nanofibers that have high specific surface area, considerable porosity, and small diameter. Scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, fourier transform infrared spectroscopy, Brunauer–Emmett–Teller surface area analysis, and CHNS/O elemental analyser were applied to characterize the fabricated CS/PVA composite nanofibers. Moreover, the influences of spinning conditions including concentration, voltage, electrospinning distance, and flow rate, on size distribution and pore diameter of the final product were systematically studied using 2k−1 factorial design experiments, and the response surface optimization was used for determining the best synthesis parameter. The results obtained from 2K−1 factorial design experiments showed that electrospinning parameters influenced the size distribution and pore diameter of the CS/PVA microporous material. Based on the response surface methodology, the CS/PVA product could be obtained with a high microporous diameter of 1.8 nm and a small diameter distribution of 15.0 nm under optimized conditions. The obtained results showed that the fabricated samples could be utilized in different applications.


Electrospinning Biodegradable composite Microporous material 2k−1 factorial design 


  1. 1.
    Wannatong L, Sirivat A, Supaphol P (2004) Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene. Polym Int 53:1851–1859CrossRefGoogle Scholar
  2. 2.
    Agarwal S, Greiner A, Wendorff JH (2013) Functional materials by electrospinning of polymers. Prog Polym Sci 38:963–991CrossRefGoogle Scholar
  3. 3.
    Teo W-E, Inai R, Ramakrishna S (2016) Technological advances in electrospinning of nanofibers. Sci Technol Adv Mater. doi:  10.1088/1468-6996/12/1/013002 Google Scholar
  4. 4.
    Persano L, Camposeo A, Tekmen C, Pisignano D (2013) Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromol Mater Eng 298:504–520CrossRefGoogle Scholar
  5. 5.
    Chou HY, Chien HS, Chang HJ, Nurmalasari NP (2015) Electrospinning solution, polyvinyl alcohol nanofibers and ion-exchange membrane. US Patent 20,150,328,631Google Scholar
  6. 6.
    Essalhi M, Khayet M (2013) Self-sustained webs of polyvinylidene fluoride electrospun nanofibers at different electrospinning times: 2. Theoretical analysis, polarization effects and thermal efficiency. J Membr Sci 433:180–191CrossRefGoogle Scholar
  7. 7.
    Morie A, Garg T, Goyal AK, Rath G (2016) Nanofibers as novel drug carrier–an overview. Artifi Cells Nanomed Biotechnol 44:135–143CrossRefGoogle Scholar
  8. 8.
    Song W, Yu X, Markel DC, Shi T, Ren W (2013) Coaxial PCL/PVA electrospun nanofibers: osseointegration enhancer and controlled drug release device. Biofabrication 5:035006CrossRefGoogle Scholar
  9. 9.
    Chauhan D, Dwivedi J, Sankararamakrishnan N (2014) Novel chitosan/PVA/zerovalent iron biopolymeric nanofibers with enhanced arsenic removal applications. Environ Sci Pollut Res 21:9430–9442CrossRefGoogle Scholar
  10. 10.
    Habiba U, Afifi AM, Salleh A, Ang BC (2016) Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. J Hazard Mater. doi: 10.1016/j.jhazmat.2016.06.028 Google Scholar
  11. 11.
    D.H.K. Reddy, Lee S-M (2013) Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Colloid Interface Sci 201:68–93CrossRefGoogle Scholar
  12. 12.
    Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, Gholami Z, Amouzgar P (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr Polym 113:115–130CrossRefGoogle Scholar
  13. 13.
    Kyzas GZ, Siafaka PI, Pavlidou EG, Chrissafis KJ, Bikiaris DN (2015) Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. Chem Eng J 259:438–448CrossRefGoogle Scholar
  14. 14.
    Baker MI, Walsh SP, Schwartz Z, Boyan BD (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res B Appl Biomater 100:1451–1457CrossRefGoogle Scholar
  15. 15.
    Karimi A, Navidbakhsh M, Yousefi H (2014) Mechanical properties of polyvinyl alcohol sponge under different strain rates. Int J Mater Res 105:404–408CrossRefGoogle Scholar
  16. 16.
    Xu Y, Jin S, Xu H, Nagai A, Jiang D (2013) Conjugated microporous polymers: design, synthesis and application. Chem Soc Rev 42:8012–8031CrossRefGoogle Scholar
  17. 17.
    Sun J-K, Xu Q (2014) Functional materials derived from open framework templates/precursors: synthesis and applications. Energy Environ Sci 7:2071–2100CrossRefGoogle Scholar
  18. 18.
    Zhang Y, Riduan SN (2012) Functional porous organic polymers for heterogeneous catalysis. Chem Soc Rev 41:2083–2094CrossRefGoogle Scholar
  19. 19.
    Choi KM, Na K, Somorjai GA, Yaghi OM (2015) Chemical environment control and enhanced catalytic performance of platinum nanoparticles embedded in nanocrystalline metal–organic frameworks. J Am Chem Soc 137:7810–7816CrossRefGoogle Scholar
  20. 20.
    Li W, Henke S, Cheetham AK (2014) Research update: mechanical properties of metal–organic frameworks–Influence of structure and chemical bonding. APL Mater 2:123902CrossRefGoogle Scholar
  21. 21.
    Katsenis AD, Puškarić A, Štrukil V, Mottillo C, Julien PA, Užarević K, Pham M-H, Do T-O, Kimber SA, Lazić P (2015) In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework. Nature Commun 6:6662CrossRefGoogle Scholar
  22. 22.
    Sargazi G, Afzali D, Ghafainazari A, Saravani H (2014) Rapid Synthesis of cobalt metal organic framework. J Inorg Organomet Polym Mater 24:786–790CrossRefGoogle Scholar
  23. 23.
    Salah R, Michaud P, Mati F, Harrat Z, Lounici H, Abdi N, Drouiche N, Mameri N (2013) Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1. Int J Biol Macromol 52:333–339CrossRefGoogle Scholar
  24. 24.
    Younes I, Sellimi S, Rinaudo M, Jellouli K, Nasri M (2014) Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities. Int J Food Microbiol 185:57–63CrossRefGoogle Scholar
  25. 25.
    Tomé LC, Fernandes SC, Perez DS, Sadocco P, Silvestre AJ, Neto CP, Marrucho IM, Freire CS (2013) The role of nanocellulose fibers, starch and chitosan on multipolysaccharide based films. Cellulose 20:1807–1818CrossRefGoogle Scholar
  26. 26.
    Dehnad D, Mirzaei H, Emam-Djomeh Z, Jafari S-M, Dadashi S (2014) Thermal and antimicrobial properties of chitosan–nanocellulose films for extending shelf life of ground meat. Carbohydr Polym 109:148–154CrossRefGoogle Scholar
  27. 27.
    Khalil A, Hashaikeh R (2014) Electrospinning of nickel oxide nanofibers: Process parameters and morphology control. Mater Charact 95:65–71CrossRefGoogle Scholar
  28. 28.
    Sargazi G, Afzali D, Mostafavi A, Ebrahimipour SY (2017) Ultrasound-assisted facile synthesis of a new tantalum (V) metal-organic framework nanostructure: design, characterization, systematic study, and CO2 adsorption performance. J Solid State Chem 250:32–48CrossRefGoogle Scholar
  29. 29.
    Hutchison CA, Chuang R-Y, Noskov VN, Assad-Garcia N, Deerinck TJ, Ellisman MH, Gill J, Kannan K, Karas BJ, Ma L (2016) Design and synthesis of a minimal bacterial genome. Science 351:aad6253CrossRefGoogle Scholar
  30. 30.
    Zaidi S, Oulebsir A, Omine K, Alonzo V, Chaabane T, Darchen A, Msagati T, Sivasankar V (2017) Preparation of mesoporous alumina electro-generated by electrocoagulation in NaCl electrolyte and application in fluoride removal with consistent regenerations. Arab J Chem. doi:  10.1016/j.arabjc.2017.04.007 Google Scholar
  31. 31.
    Lambropoulou D, Evgenidou E, Saliverou V, Kosma C, Konstantinou I (2017) Degradation of venlafaxine using TiO2/UV process: kinetic studies, RSM optimization, identification of transformation products and toxicity evaluation. J Hazard Mater 323:513–526CrossRefGoogle Scholar
  32. 32.
    Wang J, Chen C (2014) Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour Technol 160:129–141CrossRefGoogle Scholar
  33. 33.
    Kyzas GZ, Deliyanni EA (2013) Mercury (II) removal with modified magnetic chitosan adsorbents. Molecules 18:6193–6214CrossRefGoogle Scholar
  34. 34.
    Esmaeili A, Beni AA (2014) A novel fixed-bed reactor design incorporating an electrospun PVA/chitosan nanofiber membrane. J Hazard Mater 280:788–796CrossRefGoogle Scholar
  35. 35.
    Susanto H, Samsudin AM, Faz MW, Rani MP (2016) Impact of post-treatment on the characteristics of electrospun poly(vinyl alcohol)/chitosan nanofibers, in: The 3rd international conference on advanced materials science and technology (ICAMST 2015), AIP Publishing, &, pp<background-color:#96C864;> </background-color:#96C864;>020087t;/bib>Google Scholar
  36. 36.
    Mahmoodi NM, Mokhtari-Shourijeh Z (2015) Preparation of PVA-chitosan blend nanofiber and its dye removal ability from colored wastewater. Fibers Polym 16:1861–1869CrossRefGoogle Scholar
  37. 37.
    Qian Y, Qi M, Zheng L, King MW, Lv L, Ye F (2016) Incorporation of rutin in electrospun pullulan/pva nanofibers for novel uv-resistant properties. Materials 9:504CrossRefGoogle Scholar
  38. 38.
    Sargazi G, Afzali D, Daldosso N, Kazemian H, Chauhan N, Sadeghian Z, Tajerian T, Ghafarinazari A, Mozafari M (2015) A systematic study on the use of ultrasound energy for the synthesis of nickel–metal organic framework compounds. Ultrason Sonochem 27:395–402CrossRefGoogle Scholar
  39. 39.
    Song W, Zhao L, Fang K, Chang B, Zhang Y (2015) Biofunctionalization of titanium implant with chitosan/siRNA complex through loading-controllable and time-saving cathodic electrodeposition. J Mater Chem B 3:8567–8576CrossRefGoogle Scholar
  40. 40.
    Boonsongrit Y, Mueller BW, Mitrevej A (2008) Characterization of drug–chitosan interaction by 1 H NMR, FTIR and isothermal titration calorimetry. Eur J Pharm Biopharm 69:388–395CrossRefGoogle Scholar
  41. 41.
    Mincheva R, Manolova N, Sabov R, Kjurkchiev G, Rashkov I (2004) Hydrogels from chitosan crosslinked with poly(ethylene glycol) diacid as bone regeneration materials. e-Polymers 4:643–653CrossRefGoogle Scholar
  42. 42.
    Rouquerol J, Rouquerol F, Llewellyn P, Maurin G, Sing KS (2013) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, San DiegoGoogle Scholar
  43. 43.
    Adams CW, Bielmann M, Zhang Z (2016) Microporous membranes, separators, lithium batteries, and related methods, in, Google PatentsGoogle Scholar
  44. 44.
    Hadipour-Goudarzi E, Montazer M, Latifi M, A.A.G. Aghaji (2014) Electrospinning of chitosan/sericin/PVA nanofibers incorporated with in situ synthesis of nano silver. Carbohydr Polym 113:231–239CrossRefGoogle Scholar
  45. 45.
    Habiba U, Afifi AM, Salleh A, Ang BC (2017) Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. J Hazard Mater 322:182–194CrossRefGoogle Scholar
  46. 46.
    Liu Z, Zhang F, Ming J, Bie S, Li J, Zuo B (2015) Preparation of electrospun silk fibroin nanofibers from solutions containing native silk fibrils. J Appl Polym Sci. doi:  10.1002/app.41236
  47. 47.
    Pelipenko J, Kocbek P, Kristl J (2015) Nanofiber diameter as a critical parameter affecting skin cell response. Eur J Pharm Sci 66:29–35CrossRefGoogle Scholar
  48. 48.
    Liu R, Xu X, Zhuang X, Cheng B (2014) Solution blowing of chitosan/PVA hydrogel nanofiber mats. Carbohydr Polym 101:1116–1121CrossRefGoogle Scholar
  49. 49.
    Zhou Y, Yang H, Liu X, Mao J, Gu S, Xu W (2013) Electrospinning of carboxyethyl chitosan/poly(vinyl alcohol)/silk fibroin nanoparticles for wound dressings. Int J Biol Macromol 53:88–92CrossRefGoogle Scholar
  50. 50.
    Yazdanpanah M, Khanmohammadi M, Aghdam R, Shabani K, Rajabi M (2014) Optimization of electrospinning process of poly(vinyl alcohol) via response surface methodology (RSM) based on the central composite design. Curr Chem Lett 3:175–182CrossRefGoogle Scholar
  51. 51.
    Kheradmandi M, Vasheghani-Farahani E, Ghiaseddin A, Ganji F (2016) Skeletal muscle regeneration via engineered tissue culture over electrospun nanofibrous chitosan/PVA scaffold. J Biomed Mater Res Part A 104:1720–1727CrossRefGoogle Scholar
  52. 52.
    Lv T, Yao Y, Li N, Chen T (2016) Wearable fiber-shaped energy conversion and storage devices based on aligned carbon nanotubes. Nano Today 11:644-660CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Ghasem Sargazi
    • 1
    • 2
  • Daryoush Afzali
    • 3
  • Ali Mostafavi
    • 4
  • S. Yousef Ebrahimipour
    • 4
  1. 1.Department of Nanotechnology Engineering, Mineral Industries Research CenterShahid Bahonar University of KermanKermanIran
  2. 2.Young Researchers SocietyShahid Bahonar University of KermanKermanIran
  3. 3.Department of NanotechnologyGraduate University of Advanced TechnologyKermanIran
  4. 4.Department of Chemistry, Faculty of scienceShahid Bahonar University of KermanKermanIran

Personalised recommendations