Journal of Polymers and the Environment

, Volume 26, Issue 5, pp 1782–1794 | Cite as

Crosslinking of Polyvinyl Alcohol (PVA) and Effect of Crosslinker Shape (Aliphatic and Aromatic) Thereof

  • Amit Kumar Sonker
  • Kalpana Rathore
  • Rajaram Krishna Nagarale
  • Vivek Verma
Original Paper


In the presented work, the effect of crosslinker geometry on the properties of PVA is reported. The aliphatic (suberic) and aromatic (terephthalic) dicarboxylic acids are used as crosslinker molecules. On the basis of tensile test and thermal properties, it is observed that crosslinking of PVA by suberic acid is more effective than terephthalic acid. The maximum strength measured in crosslinked samples is 32.5 MPa for suberic acid crosslinked PVA which is higher than that of neat PVA (22.6 MPa). Swelling study shows that 8 h crosslinked terephthalic acid (35% w/w) samples have a minimum of 5.4% of water uptake compared to neat PVA, which dissolves readily in water. DTGA shows that the decomposition temperature of crosslinked PVA is 345 °C while neat PVA has a decomposition temperature of 315 °C. FTIR spectroscopy confirms the formation of crosslink ester bond in crosslinked PVA. The crosslinked samples kept for bio-degradation show maximum degradation in terephthalic acid (15% w/w) crosslinked PVA.


Crosslinking Swelling Mechanical properties Thermal properties Biodegradation 



RKN thanks the Department of Science & Technology (DST), Government of India, for Ramanujan Fellowship (SR/S2/RJN-18/2011) award. The work is funded by Science and Engineering Research Board (SERB) SR/S3/CE/038/2012 granted to VV.

Supplementary material

10924_2017_1077_MOESM1_ESM.docx (942 kb)
Supplementary material 1 (DOCX 942 KB)


  1. 1.
    Horii F, Masuda K (1998) Chap. 19 Hydrogen-bonded polymers. In: Isao A, Tetsou A (eds) Studies in physical and theoretical chemistry, vol 84. Elsevier, Amsterdam, pp 713–736Google Scholar
  2. 2.
    Earl PA (1965) Polyvinyl acetate and polyvinyl alcohol adhesives. US3213051 A (US patent)Google Scholar
  3. 3.
    Zaisheng Cai, Yiping Qiu, Chuyang Zhang, Hwang Y-J, Mccord M (2003) Effect of atmospheric plasma treatment on desizing of PVA on cotton. Text Res J 73(8):670–674CrossRefGoogle Scholar
  4. 4.
    Rosenblatt KM, Bunjes H (2009) Poly(vinyl alcohol) as emulsifier stabilizes solid triglyceride drug carrier nanoparticles in the α-modification. Mol Pharm 6(1):105–120CrossRefGoogle Scholar
  5. 5.
    Bolto B, Tran T, Hoang M, Xie Z (2009) Crosslinked poly(vinyl alcohol) membranes. Prog Polym Sci 34(9):969–981CrossRefGoogle Scholar
  6. 6.
    Oshima K, Iwasaki S (1990) Pneumatic radial tires with a folded belt and high strength vinylon fiber cords. US4971127 A (US patent)Google Scholar
  7. 7.
    Mohanty S, Larsen LB, Trifol J, Szabo P, Burri HVR, Canali C, Dufva M, Emnéus J, Wolff A (2015) Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds. Mater Sci Eng C 55:569–578CrossRefGoogle Scholar
  8. 8.
    Heydari M, Moheb A, Ghiaci M, Masoomi M (2013) Effect of crosslinking time on the thermal and mechanical properties and pervaporation performance of poly(vinyl alcohol) membrane crosslinked with fumaric acid used for dehydration of isopropanol. J Appl Polym Sci 128(3):1640–1651Google Scholar
  9. 9.
    Işıklan N, Şanlı O (2005) Separation characteristics of acetic acid–water mixtures by pervaporation using poly(vinyl alcohol) membranes modified with malic acid. Chem Eng Process 44(9):1019–1027CrossRefGoogle Scholar
  10. 10.
    Caro SV, Sung CSP, Merrill EW (1976) Reaction of hexamethylene diisocyanate with polyvinyl alcohol films for biomedical applications. J Appl Polym Sci 20(12):3241–3246CrossRefGoogle Scholar
  11. 11.
    Arranz F, Sánchez-Chaves M, Martínez R (1987) Reaction of poly(vinyl alcohol) with n-butyl isocyanate. Chemical hydrolysis of the resulting polymers. Die Angewandte Makromolekulare Chemie 152(1):79–91CrossRefGoogle Scholar
  12. 12.
    Arranz F, Bejarano EM, Sanchez-Chaves M (1994) Poly(vinyl alcohol) functionalized by chloroacetate groups. Coupling of bioactive carboxylic acids. Macromol Chem Phys 195(12):3789–3798CrossRefGoogle Scholar
  13. 13.
    Ichimura K, Watanabe S (1982) Preparation and characteristics of photocrosslinkable poly(vinyl alcohol). J Polym Sci 20(6):1419–1432Google Scholar
  14. 14.
    Ichimura K (1982) Preparation of water-soluble photoresist derived from poly(vinyl alcohol). J Polym Sci 20(6):1411–1417Google Scholar
  15. 15.
    Sonker AK, Tiwari N, Nagarale RK, Verma V (2016) Synergistic effect of cellulose nanowhiskers reinforcement and dicarboxylic acids crosslinking towards polyvinyl alcohol properties. J Polym Sci 54(16):2515–2525CrossRefGoogle Scholar
  16. 16.
    Suzuki T, Ichihara Y, Yamada M, Tonomura K (1973) Some characteristics of Pseudomonas 0–3 which utilizes polyvinyl alcohol. Agric Biol Chem 37(4):747–756Google Scholar
  17. 17.
    Chiellini E, Corti A, D’Antone S, Solaro R (2003) Biodegradation of poly (vinyl alcohol) based materials. Prog Polym Sci 28(6):963–1014CrossRefGoogle Scholar
  18. 18.
    Figueiredo KCS, Alves TLM, Borges CP (2009) Poly(vinyl alcohol) films crosslinked by glutaraldehyde under mild conditions. J Appl Polym Sci 111(6):3074–3080CrossRefGoogle Scholar
  19. 19.
    Campos E, Coimbra P, Gil MH (2013) An improved method for preparing glutaraldehyde crosslinked chitosan–poly(vinyl alcohol) microparticles. Polym Bull 70(2):549–561CrossRefGoogle Scholar
  20. 20.
    Beydaghi H, Javanbakht M, Badiei A (2014) Crosslinked poly(vinyl alcohol)/sulfonated nanoporous silica hybrid membranes for proton exchange membrane fuel cell. J Nanostruct Chem 4(2):1–9CrossRefGoogle Scholar
  21. 21.
    Peng F, Hu C, Jiang Z (2007) Novel ploy(vinyl alcohol)/carbon nanotube hybrid membranes for pervaporation separation of benzene/cyclohexane mixtures. J Membr Sci 297(1–2):236–242CrossRefGoogle Scholar
  22. 22.
    Namboodiri VV, Ponangi R, Vane LM (2006) A novel hydrophilic polymer membrane for the dehydration of organic solvents. Eur Polym J 42(12):3390–3393CrossRefGoogle Scholar
  23. 23.
    Wang X, Fang D, Yoon K, Hsiao BS, Chu B (2006) High performance ultrafiltration composite membranes based on poly(vinyl alcohol) hydrogel coating on crosslinked nanofibrous poly(vinyl alcohol) scaffold. J Membr Sci 278(1–2):261–268Google Scholar
  24. 24.
    Zhang Y, Li H, Li H, Li R, Xiao C (2006) Preparation and characterization of modified polyvinyl alcohol ultrafiltration membranes. Desalination 192(1–3):214–223CrossRefGoogle Scholar
  25. 25.
    Liu Q-L, Li Q-B (2002) Membrane of PVA coated on porous catalytic ceramic disks supported H3PW12O40. J Membr Sci 202(1–2):89–95CrossRefGoogle Scholar
  26. 26.
    Huang RYM, Rhim JW (1993) Modification of poly(vinyl alcohol) using maleic acid and its application to the separation of acetic acid-water mixtures by the pervaporation technique. Polym Int 30(1):129–135CrossRefGoogle Scholar
  27. 27.
    Rhim J-W, Park HB, Lee C-S, Jun J-H, Kim DS, Lee YM (2004) Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes. J Membr Sci 238(1–2):143–151CrossRefGoogle Scholar
  28. 28.
    Dlamini DS, Wang J, Mishra AK, Mamba BB, Hoek EMV (2013) Effect of crosslinking agent chemistry and coating conditions on physical, chemical, and separation properties of PVA-Psf composite membranes. Sep Sci Technol 49(1):22–29CrossRefGoogle Scholar
  29. 29.
    Jian S, Xiao Ming S (1987) Crosslinked PVA-PS thin-film composite membrane for reverse osmosis. Desalination 62(0):395–403CrossRefGoogle Scholar
  30. 30.
    Krumova M, López D, Benavente R, Mijangos C, Pereña JM (2000) Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol). Polymer 41(26):9265–9272CrossRefGoogle Scholar
  31. 31.
    Miyazaki T, Takeda Y, Akane S, Itou T, Hoshiko A, En K (2010) Role of boric acid for a poly (vinyl alcohol) film as a crosslinking agent: melting behaviors of the films with boric acid. Polymer 51(23):5539–5549CrossRefGoogle Scholar
  32. 32.
    Wan YZ, Luo H, He F, Liang H, Huang Y, Li XL (2009) Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites. Compos Sci Technol 69(7–8):1212–1217CrossRefGoogle Scholar
  33. 33.
    Miao T, Miller EJ, McKenzie C, Oldinski RA (2015) Physically crosslinked polyvinyl alcohol and gelatin interpenetrating polymer network theta-gels for cartilage regeneration. J Mater Chem B 3(48):9242–9249CrossRefGoogle Scholar
  34. 34.
    Cutiongco MF, Choo RK, Shen NJ, Chua BM, Sju E, Choo AW, Le Visage C, Yim EK (2015) Composite scaffold of poly(vinyl alcohol) and interfacial polyelectrolyte complexation fibers for controlled biomolecule delivery. Front Bioeng Biotechnol 3:3CrossRefGoogle Scholar
  35. 35.
    Kim JH, Moon EJ, Kim CK (2003) Composite membranes prepared from poly(m-animostyrene-co-vinyl alcohol) copolymers for the reverse osmosis process. J Membr Sci 216(1–2):107–120CrossRefGoogle Scholar
  36. 36.
    Blout ER, Karplus R (1948) The infrared spectrum of polyvinyl alcohol. J Am Chem Soc 70(2):862–864CrossRefGoogle Scholar
  37. 37.
    Refojo MF (1965) Permeation of water through some hydrogels. J Appl Polym Sci 9(10):3417–3426CrossRefGoogle Scholar
  38. 38.
    Yasuda H, Lamaze CE, Peterlin A (1971) Diffusive and hydraulic permeabilities of water in water-swollen polymer membranes. J Polym Sci Part A-2 9(6):1117–1131CrossRefGoogle Scholar
  39. 39.
    Yasuda H, Lamaze CE (1971) Salt rejection by polymer membranes in reverse osmosis. I. Nonionic polymers. J Polym Sci Part A-2 9(9):1537–1551CrossRefGoogle Scholar
  40. 40.
    Gohil JM, Bhattacharya A, Ray P (2006) Studies on the crosslinking of poly (vinyl alcohol). J Polym Res 13(2):161–169CrossRefGoogle Scholar
  41. 41.
    Flory PJ, Rehner J (1943) Statistical mechanics of cross-linked polymer networks II. swelling. J Chem Phys 11(11):521–526CrossRefGoogle Scholar
  42. 42.
    Yang M-H, Chu T-J (1993) The determination of interaction parameter χ1 for polyvinyl alcohol and water from the diffusion data. Polym Test 12(1):57–64CrossRefGoogle Scholar
  43. 43.
    Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19(5):375–398Google Scholar
  44. 44.
    Mooney RCL (1941) An X-ray study of the structure of polyvinyl alcohol. J Am Chem Soc 63(10):2828–2832CrossRefGoogle Scholar
  45. 45.
    Assender HE, Windle AH (1998) Crystallinity in poly(vinyl alcohol). 1. An X-ray diffraction study of atactic PVOH. Polymer 39(18):4295–4302CrossRefGoogle Scholar
  46. 46.
    Ahmad J, Hägg M-B (2013) Preparation and characterization of polyvinyl acetate/zeolite 4 A mixed matrix membrane for gas separation. J Membr Sci 427:73–84CrossRefGoogle Scholar
  47. 47.
    Ahmad J, Hågg MB (2013) Polyvinyl acetate/titanium dioxide nanocomposite membranes for gas separation. J Membr Sci 445:200–210CrossRefGoogle Scholar
  48. 48.
    Bunn CW (1948) Crystal structure of polyvinyl alcohol. Nature 161:929–930CrossRefGoogle Scholar
  49. 49.
    Post B (1971) X-ray diffraction methods in polymer science, Leroy E. Alexander, wiley-interscience, new york, 1970. xv + 582 pp. J Polym Sci Part B 9(8):635–636CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Amit Kumar Sonker
    • 1
  • Kalpana Rathore
    • 1
  • Rajaram Krishna Nagarale
    • 2
    • 3
  • Vivek Verma
    • 1
    • 4
  1. 1.Department of Materials Science and EngineeringIndian Institute of Technology KanpurKanpurIndia
  2. 2.Department of Chemical EngineeringIndian Institute of Technology KanpurKanpurIndia
  3. 3.Reverse Osmosis (Engineering) DivisionCentral Salt and Marine Chemicals Research InstituteBhavnagarIndia
  4. 4.Centre for Environmental Science & EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations