Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 5, pp 2192–2206 | Cite as

Glycolipid Biosurfactants, Main Classes, Functional Properties and Related Potential Applications in Environmental Biotechnology

  • Inès Mnif
  • Semia Ellouz-Chaabouni
  • Dhouha Ghribi
Review

Abstract

Glycolipids, consisting of a carbohydrate moiety linked to fatty acids, are microbial surface active compounds produced by various microorganisms. Glycolipids are characterized by highly structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface respectively. It presented initially a detailed classification of glycolipid including rhamnolipids, trehalolipids, mannosylerythritol-lipids, cellobiolipids; along with their producing strain. The review described the main functional properties of glycolipid including emulsification/de-emulsification capacity, foaming and moisturizing, viscosity reduction and hydrocarbon solubilizing and mobilizing capacities. Owing these properties, they can be applied in environmental fields as hydrocarbon emulsifiers, solubilizing and mobilizing agents, for their moisturizing capabilities and ability to reduce viscosity. The review will present a detailed classification of glycolipid biosurfactants, functional properties and the potential related applications in environment and bioremediation.

Keywords

Glycolipids Surfactants Emulsification Solubilisation Mobilisation Heavy metal chelation Bioremediation 

Notes

Acknowledgements

This work has been supported by grants from ‘‘Tunisian Ministry of Higher Education, Scientific Research and Technology”.

Compliance with Ethical Standards

Conflict of interest

The authors report no conflict of interest.

References

  1. 1.
    Kitamoto D, Isoda H, Nakahara T (2002) Functions and potential applications of glycolipid biosurfactants. J Biosci Bioeng 94:187–201CrossRefGoogle Scholar
  2. 2.
    Benincasa M, Abalos A, Oliveira I, Manresa A (2004) Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie Van Leeuwenhoek 85:1–8CrossRefGoogle Scholar
  3. 3.
    Daverey A, Pakshirajan K (2009) Production of sophorolipids by the yeast Candida bombicola using simple and low cost fermentative media. Food Res Int 42:499–504CrossRefGoogle Scholar
  4. 4.
    Daverey A, Pakshirajan K (2009) Production, characterization, and properties of sophorolipids from the yeast Candida bombicola using a low-cost fermentative medium. Appl Biochem Biotechnol 158:663–674CrossRefGoogle Scholar
  5. 5.
    Wadekar SD, Kale SB, Lali AM, Bhowmick DN, Pratap AP (2012) Microbial synthesis of rhamnolipids by Pseudomonas aeruginosa (ATCC10145) on waste frying oil as low cost carbon source. Prep Biochem Biotechnol 142:249–266CrossRefGoogle Scholar
  6. 6.
    Joshi-Navare K, Khanvilkar P, Prabhune A (2013) Jatropha oil derived sophorolipids: production and characterization as laundry detergent additive. Biochem Res Int 2013:169797CrossRefGoogle Scholar
  7. 7.
    Gudiña EJ, Rodrigues AI, Alves E, Domingues MR, Teixeira JA, Rodrigues LR (2015) Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Bioresour Technol 17:87–93CrossRefGoogle Scholar
  8. 8.
    Vedaraman N, Venkatesh NM (2010) The effect of medium composition on the production of sophorolipids and the tensiometric properties by Starmerella bombicola MTCC 1910. Pol J Chem Technol 12:9–13CrossRefGoogle Scholar
  9. 9.
    Kim H-S, Jeon J-W, Lee H-W, Park Y-I, Seo W-T, Oh H-M, Katsuragi T, Tani Y, Yoon B-D (2002) Extracellular production of a glycolipid biosurfactant, mannosylerythritol lipid, from Candida antarctica. Biotechnol Lett 24:225–229CrossRefGoogle Scholar
  10. 10.
    Kim H-S, Jeon J-W, Kim B-H, Ahn C-Y, Oh H-M, Yoon B-D (2006) Extracellular production of a glycolipid biosurfactant, mannosylerythritol lipid, by Candida sp. SY16 using fed-batch fermentation. Appl Microbiol Biotechnol 70:391–396CrossRefGoogle Scholar
  11. 11.
    Camilios Neto D, Meira JA, Tiburtius E, Zamora PP, Bugay C, Mitchell DA, Krieger N (2009) Production of rhamnolipids in solid-state cultivation: characterization, downstream processing and application in the cleaning of contaminated soils. Biotechnol J 4:748–755CrossRefGoogle Scholar
  12. 12.
    Abbasi H, Sharafi H, Alidost L, Bodagh A, Zahiri HS, Noghabi KA (2013) Response surface optimization of biosurfactant produced by Pseudomonas aeruginosa MA01 isolated from spoiled apples. Prep Biochem Biotechnol 43:398–414CrossRefGoogle Scholar
  13. 13.
    Manivasagan P, Sivasankar P, Venkatesan J, Sivakumar K, Kim S-K (2014) Optimization, production and characterization of glycolipid biosurfactant from the actinobacterium, Streptomuces sp. MAB36. Bioprocess Biosyst Eng 37:783–797CrossRefGoogle Scholar
  14. 14.
    Jadhav M, Kalme S, Tamboli D, Govindwar S (2011) Rhamnolipid from Pseudomonas desmolyticum NCIM-2112 and its role in the degradation of Brown 3REL. J Basic Microbiol 51:385396CrossRefGoogle Scholar
  15. 15.
    Christova N, Tuleva B, Kril A, Georgieva M, Konstantinov S, Terziyski I, Nikolova B, Stoineva I (2013) Chemical structure and in vitro antitumor activity of rhamnolipids from Pseudomonas aeruginosa BN10. Appl Biochem Biotechnol 170:676–689CrossRefGoogle Scholar
  16. 16.
    Colin VL, Castro MF, Amoroso MJ, Villegas LB (2013) Production of bioemulsifiers by Amycolatopsis tucumanensis DSM 45259 and their potential application in remediation technologies for soils contaminated with hexavalent chromium. J Hazard Mater 261:577–583CrossRefGoogle Scholar
  17. 17.
    Chandran P, Das N (2010) Biosurfactant production and diesel oil degradation by yeast species Trichosporon asahii isolated from petroleum hydrocarbon contaminated soil. Int J Eng Sci Technol 2:6942–6953Google Scholar
  18. 18.
    de Souza Sobrinho HB, de Luna JM, Rufino RD, Porto ALF, Sarubbo LA (2013) Application of biosurfactant from Candida sphaerica UCP 0995 in removal of petroleum derivative from soil and sea water. J Life Sci 7:559–569Google Scholar
  19. 19.
    Joshi-Navare K, Singh PK, Prabhune AA (2014) New yeast isolate Pichia caribbica synthesizes xylolipid biosurfactant with enhanced functionality. Eur J Lipid Sci Technol 116:1070–1079CrossRefGoogle Scholar
  20. 20.
    Hewald S, Josephs K, Bolker M (2005) Genetic analysis of biosurfactant production in Ustilago maydis. Appl Environ Microbiol 71:3033–3040CrossRefGoogle Scholar
  21. 21.
    Jing C, Xin S, Hui Z, Yinbo Q (2006) Production, structure elucidation and anticancer properties of sophorolipod from Wickerhaniella domercqiae. Enzym Microbial Technol 39:501–506CrossRefGoogle Scholar
  22. 22.
    Sajna KV, Sukumaran RK, Jayamurthy H, Reddy KK, Kanjilal S, Prasad RBN, Pandey A (2013) Studies on biosurfactants from Pseudozyma sp. NII 08165 and their potential application as laundry detergent additives. Biochem Eng J 78:85–92CrossRefGoogle Scholar
  23. 23.
    Sha R, Jiang L, Meng Q, Zhang G, Song Z (2011) Producing cell-free culture broth of rhamnolipids as a cost-effective fungicide against plant pathogens. J Basic Microbiol 51:1–9CrossRefGoogle Scholar
  24. 24.
    Marquez-Rocha FJ, Hernandez-Rodriguez V, Lamela MT (2011) Biodegradation of engine and diesel oil in soil by a microbial consortium. Water Air Soil Pollut 128:313–320CrossRefGoogle Scholar
  25. 25.
    Shoeb E, Akhlaq F, Badar U, Akhter J, Imtiaz S (2013) Classification and industrial applications of biosurfactants. Part-I: Nat Appl Sci 4:243–252Google Scholar
  26. 26.
    Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336CrossRefGoogle Scholar
  27. 27.
    Raza ZA, Khan MS, Khalid ZM (2007) Evaluation of distant carbon sources in biosurfactant production by a gamma ray-induced Pseudomonas putida mutant. Process Biochem 42:686–692CrossRefGoogle Scholar
  28. 28.
    Kulkarni M, Chaudhari R, Chaudhari A (2007) Novel tension-active microbial compounds for biocontrol applications. Gen Concepts Integr Pest Dis Manag 2007:295304CrossRefGoogle Scholar
  29. 29.
    Whang L-M, Liu P-WG, Ma C-C, Cheng S-S (2009) Application of rhamnolipid and surfactin for enhanced diesel biodegradation—effects of pH and ammonium addition. J Hazard Mater 164:1045–1050CrossRefGoogle Scholar
  30. 30.
    Nayak AS, Vijaykumar MH, Karegoudar TB (2009) Characterization of biosurfactant produced by Pseudoxanthomonas sp. PNK-04 and its application in bioremediation. Int Biodeterior Biodegr 63:73–79CrossRefGoogle Scholar
  31. 31.
    Lotfabad T, Shahcheraghi F, Shooraj F (2012) Assessment of antibacterial capability of rhamnolipids produced by two indigenous Pseudomonas aeruginosa strains. Jundishapur J Microbiol 6:2935CrossRefGoogle Scholar
  32. 32.
    Franzetti A, Gandolfi I, Bestetti G, Smyth TJP, Banat IM (2010) Production and applications of trehalose lipid biosurfactants. Eur J Lipid Sci Technol 112:617–627CrossRefGoogle Scholar
  33. 33.
    Shao Z (2011) Trehalolipids. In: Soberón-Chávez G (ed) Biosurfactants. Microbiology Monographs, vol 20. Springer, BerlinGoogle Scholar
  34. 34.
    White DA, Hird LC, Ali ST (2013) Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026. J Appl Microbiol 115:744–755CrossRefGoogle Scholar
  35. 35.
    Daverey A, Pakshirajan K (2010) Sophorolipids from Candida bombicola using mixed hydrophilic substrates: Production, purification and characterization. Colloids Surf B 79:246–253CrossRefGoogle Scholar
  36. 36.
    Tuleva B, Christova N, Cohen R, Stoev G, Stoineva I (2008) Production and structural elucidation of trehalose tetraesters (biosurfactants) from a novel alkanothrophic Rhodococcus wratislaviensis strain. J Appl Microbiol 104:1703–1710CrossRefGoogle Scholar
  37. 37.
    Chang JS, Radosevich M, Jin Y, Cha DK (2004) Enhancement of phenanthrene solubilization and biodegradation by trehalose lipid biosurfactants. Environ Toxicol Chem 23:2816–2822CrossRefGoogle Scholar
  38. 38.
    Tokumoto Y, Nomura N, Uchiyama H, Imura T, Morita T, Fukuoka T, Kitamoto D (2009) Structural characterization and surface-active properties of a succinoyl trehalose lipid produced by Rhodococcus sp. SD-74. J Oleo Sci 58:97–102CrossRefGoogle Scholar
  39. 39.
    Isoda H, Shinmoto H, Matsumura M, Nakahara T (1996) Succinoyl trehalose lipid induced differentiation of human monocytoid leukemic cell line U937 into monocyte-macrophages. Cytotechnol 19:7988CrossRefGoogle Scholar
  40. 40.
    Sudo T, Zhao X, Wakamatsu Y, Shibahara M, Nomura N, Nakahara T, Suzuki A, Kobayashi Y, Jin C, Murata T, Yokoyama KK (2000) Induction of the differentiation of human HL-60 promyelocytic leukemia cell line by succinoyl trehalose lipids. Cytotechnology 33:259–264CrossRefGoogle Scholar
  41. 41.
    Uchida Y, Tsuchiya R, Chino M, Hirano J, Tabuchi T (1989) Extracellular accumulation of mono- and di-succinoyl trehalose lipids by a strain of Rhodococcus erythropolis grown on n-alkanes. Agric Biol Chem 53:757–763Google Scholar
  42. 42.
    Kurtzman CP, Price NPJ, Ray KJ, Kuo T-M (2010) Production of sophorolipid biosurfactants by multiple species of the Starmerella (Candida) bombicola yeast clade. FEMS Microbiol Lett 311:140–146CrossRefGoogle Scholar
  43. 43.
    Van Bogaert INA, Soetaert W (2011) Sophorolipids. Biosurfactants Microbiol. Monographs 20:179–210Google Scholar
  44. 44.
    Bölker M, Basse CW, Schirawski J (2008) Ustilago maydis secondary metabolism—from genomics to biochemistry. Fungal Genet Biol 45:S88–S93CrossRefGoogle Scholar
  45. 45.
    Kulakovskaya TV, Golubev WI, Tomashevskaya MA, Kulakovskaya EV, Shashkov AS, Grachev AA, Chizhov AS, Nifantiev NE (2010) Production of antifungal cellobiose lipids by Trichosporon porosum. Mycopathologia 169:117–123CrossRefGoogle Scholar
  46. 46.
    Hua Z, Chen Y, Du C, Chen J (2004) Effects of biosurfactants produced by Candida antarctica on the biodegradation of petroleum compounds. World J Microbiol Biotechnol 20:2529Google Scholar
  47. 47.
    Rau U, Nguyen LA, Roeper H, Koch H, Lang S (2005) Downstream processing of mannosylerythritol lipids produced by Pseudozyma aphidis. Eur J Lipid Sci Technol 107:373–380CrossRefGoogle Scholar
  48. 48.
    Vollbrecht E, Heckmann R, Wray V, Nimtz M, Lang S (1998) Production and structure elucidation of di- and oligosaccharide lipids (biosurfactants) from Tsukamurella sp. nov. Appl Microbiol Biotechnol 50:530537CrossRefGoogle Scholar
  49. 49.
    Vollbrecht E, Rau U, Lang S (1999) Microbial conversion of vegetable oils into surface active di, tri-, and tetrasaccharide lipids (biosurfactants) by the bacterial strain Tsukamurella spec. Fett/Lipid 101:389–394CrossRefGoogle Scholar
  50. 50.
    Mnif I, Ghribi D (2015) Microbial derived surface active compounds: properties and screening concept. World J Microbiol Biotechnol 31:1001–1020CrossRefGoogle Scholar
  51. 51.
    McBain JW (1913) Mobility of highly-charged micelles. Trans Faraday Soc 9:99–101Google Scholar
  52. 52.
    Margaritis A, Zajic JE, Gerson DF (1979) Production and surface-active properties of microbial surfactant. Biotechnol Bioeng 21:1151–1162CrossRefGoogle Scholar
  53. 53.
    Nitsche M, Siddhartha GAO, Contiero J (2005) Ramnolipid surfactants: an update on the general aspects of these remarcable biomolecules. Biotechnol Prog 21:1593–1600CrossRefGoogle Scholar
  54. 54.
    Guerra-Santos L, Käppeli O, Fiechter A (1984) Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl Environ Microbiol 48:301–305Google Scholar
  55. 55.
    Rahman KSMP, Pasirayi G, Auger V, Ali Z (2010) Production of rhamnolipid biosurfactants by Pseudomonas aeruginosa DS10-129 in a microfluidic bioreactor. Biotechnol Appl Biochem 55:45–52CrossRefGoogle Scholar
  56. 56.
    Ali Raza Z, Saleem Khan M, Khalid ZM, Rehman A (2006) Production kinetics and tensioactive characteristics of biosurfactant from Pseudomonas aeruginosa mutant grown on waste frying oils. Biotechnol Lett 28:1623–1631CrossRefGoogle Scholar
  57. 57.
    Nitschke M, Costa SGVAO, Haddad R, Goncalves LAG, Eberlin MN, Contiero J (2005) Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol Prog 21:1562–1566CrossRefGoogle Scholar
  58. 58.
    Konishi M, Morita T, Fukuoka T, Imura T, Kitamoto D (2008) Production of new types of sophorolipids by Candida batistae. J Oleo Sci 57:359–369CrossRefGoogle Scholar
  59. 59.
    Solaiman DKY, Ashby RD, Nuñez A, Foglia TA (2004) Production of sophorolipids by Candida bombicola grown on soy molasses as substrate. Biotechnol Lett 26:1241–1245CrossRefGoogle Scholar
  60. 60.
    Tuleva B, Christova N, Cohen R, Antonova D, Todorov T, Stoineva I (2009) Isolation and characterization of trehalose tetraester biosurfactants from a soil strain Micrococcus luteus BN56. Process Biochem 44:135–141CrossRefGoogle Scholar
  61. 61.
    Singer MEV, Finnerty WR, Tunelid A (1990) Physical and chemical properties of a biosurfactant synthesized by Rhodococcus species H13-A. Can. J Microbiol 36:746–750CrossRefGoogle Scholar
  62. 62.
    Morita T, Ishibashi Y, Hirose N, Wada K, Takahashi M, Fukuoka T, Imura T, Sakai H, Abe M, Kitamoto D (2011) Production and characterization of a glycolipid biosurfactant, mannosylerythriol lipid B, from sugarcane juice by Ustilago scitaminea NBRC 32730. Biosci Biotechnol Biochem 75:1371–1376CrossRefGoogle Scholar
  63. 63.
    Morita T, Ogura Y, Takashima M, Hirose N, Fukuoka T, Imura T, Kondo Y, Kitamoto D (2011) Isolation of Pseudozyma churashimaensis sp. nov., a novel ustilaginomycetous yeast species as a producer of glycolipid biosurfactants, mannosylerythritol lipids. J Biosci Bioeng 112:137–144CrossRefGoogle Scholar
  64. 64.
    Morita T, Fukuoka T, Imura T, Kitamoto D (2012) Formation of the two novel glycolipid biosurfactants, mannosylribitol lipid and mannosylarabitol lipid, by Pseudozyma parantarctica JCM 11752 T. Appl Microbiol Biotechnol 96:931–938CrossRefGoogle Scholar
  65. 65.
    Morita T, Fukuoka T, Konishi M, Imura T, Yamamoto S, Kitagawa M, Sogabe A, Kitamoto D (2009) Production of a novel glycolipid biosurfactant, mannosylmannitol lipid, by Pseudozyma parantarctica and its interfacial properties Appl Microbiol Biotechnol 83:1017–1025CrossRefGoogle Scholar
  66. 66.
    Morita T, Ishibashi Y, Fukuoka T, Imura T, Sakai H, Abe M, Kitamoto D (2011) Production of glycolipid biosurfactants, cellobiose lipids, by Cryptococcus humicola JCM 1461 and their interfacial properties. Biosci Biotechnol Biochem 75:1597–1599CrossRefGoogle Scholar
  67. 67.
    Puchkov EO, Zahringer U, Lindner B, Kulakovskaya TV, Seydel U, Wiese A (2002) The mycocidal, membrane-active complex of Cryptococcus humicola is a new type of cellobiose lipid with detergent features. Biochim Biophys Acta 1558:161–170CrossRefGoogle Scholar
  68. 68.
    Satpute SK, Banpurkar AG, Dhakephalkar PK, Banat IM, Chopade BA (2010) Methods for investigating biosurfactants and bioemulsifiers: a review. Crit Rev Biotechnol 30:127–144CrossRefGoogle Scholar
  69. 69.
    Luna JM, Rufino RD, Campos-Takaki GM, Sarubbo LA (2012) Properties of the biosurfactant produced by Candida Sphaerica cultivated in low-cost substrates. Chem Eng Trans 27:67–72Google Scholar
  70. 70.
    Saimmai A, Rukadee O, Onlamool T, Sobhon V, Maneerat S (2012) Isolation and functional characterization of a biosurfactant produced by a new and promising strain of Oleomonas sagaranensis AT18. World J Microbiol Biotechnol 28:2973–2986CrossRefGoogle Scholar
  71. 71.
    Abouseoud M, Maachi R, Amrane A (2007) Biosurfactant production from olive oil by Pseudomonas fluorescens. In: Méndez-Vilas A (ed) Communicating Current Research and Educational Topics and Trends in Applied Microbiology, vol 1. pp 340–347Google Scholar
  72. 72.
    Pirog TP, Shevchuk TA, Voloshina IN, Karpenko EV (2004) Production of surfactants by Rhodococcus erythropolis strain EK-1, grown on hydrophilic and hydrophobic substrates. Appl Biochem Microbiol 40:470–475CrossRefGoogle Scholar
  73. 73.
    Abbasi H, Hamedi MM, Lotfabad TB, Zahiri HS, Sharafi H, Masoomi F, Moosavi-Movahedi AA, Ortiz A, Amanlou M, Noghabi KA (2012) Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical and structural characteristics of isolated biosurfactant. J Biosci Bioeng 113:211–219CrossRefGoogle Scholar
  74. 74.
    Perfumo A, Banat M, Canganella F, Marchant R (2006) Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. Appl Microbiol Biotechnol 72:132–138CrossRefGoogle Scholar
  75. 75.
    Dhasayan A, Kiran GS, Selvin J (2014) Biosurfactant by Halomonas sp. MB-30 for potential application in enhanced oil recovery. Appl Biochem Biotechnol 174:2571–2584CrossRefGoogle Scholar
  76. 76.
    Cerón-Camacho R, Martínez-Palou R, Chávez-Gómez B, Cuéllar F, Bernal-Huicochea C, Clavel JC, Aburto J (2013) Synergistic effect of alkyl-O-glucoside and -cellobioside biosurfactants as effective emulsifiers of crude oil in water. A proposal for the transport of heavy crude oil by pipeline. Fuel 110:310–317CrossRefGoogle Scholar
  77. 77.
    Nguyen TT, Sabatini DA (2009) Formulating alcohol-free microemulsions using rhamnolipid biosurfactant and rhamnolipid mixtures. J Surfact Deterg 12:109–115CrossRefGoogle Scholar
  78. 78.
    Nguyen TT, Edelen A Neighbors B, Sabatini DA (2010) Biocompatible lecithin-based microemulsions with rhamnolipid and sophorolipid biosurfactants: formulation and potential applications. J Colloid Interface Sci 348:498–504CrossRefGoogle Scholar
  79. 79.
    Worakitkanchanakul W, Imura T, Morita T, Fukuoka T, Sakai H, Abe M, Rujiravanit R, Chavadej S, Kitamoto D (2008) Formation of W/O microemulsion based on natural glycolipid biosurfactant. J Oleo Sci 57:55–59CrossRefGoogle Scholar
  80. 80.
    Mohebali G, Kaytash A, Etemadi N (2012) Efficient breaking of water/oil emulsions by a newly isolated de-emulsifying bacterium, Ochrobactrum anthropi strain RIPI5-1. Colloids Surf B 98:120–128CrossRefGoogle Scholar
  81. 81.
    Long X, Zhang G, Shen C, Sun G, Wang R, Yin L, Meng Q (2013) Application of rhamnolipid as a novel biodemulsifier for destabilizing waste crude oil. Bioresour Technol 131:1–5CrossRefGoogle Scholar
  82. 82.
    Pacwa-Plociniczak M, Plaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654CrossRefGoogle Scholar
  83. 83.
    Perfumo A, Smyth TJP, Marchant R, Banat IM (2009) Production and roles of biosurfactants and bioemulsifiers in accessing hydrophobic substrates. In: Timmis KN (ed) Microbiology of hydrocarbons, oils, lipids, and derived compounds. Springer, London (in press)Google Scholar
  84. 84.
    Whang L-M, Liuc P-WG, Ma C-C, Cheng S-S (2008) Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J Hazard Mater 151:155–163CrossRefGoogle Scholar
  85. 85.
    Abouseoud M, Yataghene A, Amrane A, Maachi R (2010) Production of a biosurfactant by Pseudomonas fluorescens-solubilizing and wetting capacity. J Hazard Mater 183:131–136CrossRefGoogle Scholar
  86. 86.
    Page CA, Bonner JS, Kanga SA, Mills MA, Autenrieth RL (1999) Biosurfactant solubilization of PAHs. Environ Eng Sci 16:465–474CrossRefGoogle Scholar
  87. 87.
    Wong JW, Fang M, Zhao Z, Xing B (2004) Effect of surfactants on solubilization and degradation of phenanthrene under thermophilic conditions. J Environ Qual 33:2015–2025CrossRefGoogle Scholar
  88. 88.
    Abdul Salam J, Das N (2013) Enhanced biodegradation of lindane using oil-in-water bio-microemulsion stabilized by biosurfactant produced by a new yeast strain, Pseudozyma VITJzN01. J Microbiol Biotechnol 23:1598–1609CrossRefGoogle Scholar
  89. 89.
    Peng F, Liu Z, Wang L, Shao Z (2007) An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. J Appl Microbiol 102:1603–1611CrossRefGoogle Scholar
  90. 90.
    Schippers C, Geßner K, Muller T, Scheper T (2000) Microbial degradation of phenanthrene by addition of a sophorolipid mixture. J Biotechnol 83:189–198CrossRefGoogle Scholar
  91. 91.
    Song D, Liang S, Yan L, Shang Y, Wang X (2016) Solubilization of polycyclic aromatic hydrocarbons by single and binary mixed rhamnolipid-sophorolipid biosurfactants. J Environ Qual 45(4):1405–1412CrossRefGoogle Scholar
  92. 92.
    Urum K, Pekdemir T (2004) Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere 57:1139–1150CrossRefGoogle Scholar
  93. 93.
    Urum K, Grigson S, Pekdemir T, McMenamy S (2006) A comparison of the efficiency of different surfactants for removal of crude oil from contaminated soils. Chemosphere 62:1403–1410CrossRefGoogle Scholar
  94. 94.
    Lai C-C, Huang Y-C, Wei Y-H, Chang J-S (2009) Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J Hazard Mater 167:609–614CrossRefGoogle Scholar
  95. 95.
    Kang SW, Kim YB, Shin JD, Kim EK (2010) Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid. Appl Biochem Biotechnol 160:780–790CrossRefGoogle Scholar
  96. 96.
    Zhang Y, Miller RM (1994) Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol 60:2101–2106Google Scholar
  97. 97.
    Kaczorek E, Olszanowski A (2011) Uptake of hydrocarbon by Pseudomonas fluorescens (P1) and Pseudomonas putida (K1) strains in the presence of surfactants: a cell surface modification. Water Air Soil Pollut 214:451–459CrossRefGoogle Scholar
  98. 98.
    Saeki H, Sasaki M, Komatsu K, Miura A, Matsuda H (2009) Oil spill remediation by using the remediation agent JE1058BS that contains a biosurfactant produced by Gordonia sp. strain JE-1058. Bioresour Technol 100:572–577CrossRefGoogle Scholar
  99. 99.
    Zhang Y, Miller RM (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58:3276–3282Google Scholar
  100. 100.
    Providenti MA, Flemming CA, Lee H, Trevors JT (1995) Effect of addition of rhamnolipid biosurfactants or rhamnolipid-producing Pseudomonas aeruginosa on phenanthrene mineralization in soil slurries. FEMS Microbiol Ecol 17:15–26CrossRefGoogle Scholar
  101. 101.
    Zhang Y, Miller RM (1995) Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n–alkanes. Appl Environ Microbiol 61:2247–2251Google Scholar
  102. 102.
    Rahman KSM, Rahman TJ, Kourkoutas Y, Petsas I, Marchant R, Banat IM (2003) Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour Technol 90:159–168CrossRefGoogle Scholar
  103. 103.
    Abalos A, Vinas M, Sabaté J, Manresa MA, Solanas AM (2004) Enhanced biodegradation of Casablanca crude oil by a microbial consortium in presence of a rhamnolipid produced by Pseudomonas aeruginosa AT10. Biodegradation 15:249–260CrossRefGoogle Scholar
  104. 104.
    Inakollu S, Hung H-C, Shreve GS (2004) Biosurfactant enhancement of microbial degradation of various structural classes of hydrocarbon in mixed waste systems. Environ Eng Sci 21:463–469CrossRefGoogle Scholar
  105. 105.
    Nguyen TT, Youssef NH, McInerney MJ, Sabatini DA (2008) Rhamnolipid biosurfactant mixtures for environmental remediation. Water Res 42:1735–1743CrossRefGoogle Scholar
  106. 106.
    Owsianiak M, Chrzanowski L, Szulc A, Staniewski J, Olszanowski A, Olejnik-Schmidt AK, Heipieper HJ (2009) Biodegradation of diesel/biodiesel blends by a consortium of hydrocarbon degraders: effect of the type of blend and the addition of biosurfactants. Bioresour Technol 100:1497–1500CrossRefGoogle Scholar
  107. 107.
    Chen Q, Bao M, Fan X, Liang S, Sun P (2013) Rhamnolipids enhance marine oil spill bioremediation in laboratory system. Mar Pollut Bull 71:269–275CrossRefGoogle Scholar
  108. 108.
    Lennarz WJ, Talamo B (1966) The chemical characterization and enzymatic synthesis of mannolipids in Micrococcus lysodeikticus. J Biol Chem 241:2707–2719Google Scholar
  109. 109.
    Nie M, Yin X, Ren C, Wang Y, Xu F, Shen Q (2010) Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY32. Biotechnol Adv 28:635–643CrossRefGoogle Scholar
  110. 110.
    Dean SM, Jin Y, Cha DK, Wilson SW, Radosevich M (2001) Phenanthrene degradation in soils co-inoculated with phenanthrene-degrading and biosurfactant-producing bacteria. J Environ Qual 30:1126–1133CrossRefGoogle Scholar
  111. 111.
    Kumar M, Leon V, Materano AS, Ilzins OA (2006) Enhancement of oil degradation by co-culture of hydrocarbon degrading and biosufactant producing bacteria. Pol J Microbiol 55:139–146CrossRefGoogle Scholar
  112. 112.
    Cameotra SS, Singh P (2009) Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species. Microb Cell Fact 8:1–7CrossRefGoogle Scholar
  113. 113.
    Millioli VS, Servulol ELC, Sobrald LGS, de Carvalho DD (2009) Bioremediation of crude oil-bearing soil: evaluating the effect of rhamnolipid addition to soil toxicity and to crude oil biodegradation efficiency. Glob Nest J 11:181–188Google Scholar
  114. 114.
    Yin X, Nie M, Shen Q (2011) Rhamnolipid biosurfactant from Pseudomonas aeruginosa strain NY3 and methods of use (United States Patent 2011, 0306569 A1). Oregon State University; the State of Oregon Acting by and through the State Board of Higher Education on behalf ofGoogle Scholar
  115. 115.
    Cristina Souza E, Vessoni-Penna TC, de Souza Oliveira RP (2014) Review biosurfactant-enhanced hydrocarbon bioremediation: an overview. Int Biodeterior Biodegrad 89:88–94CrossRefGoogle Scholar
  116. 116.
    Mu-tai Bao, Dong-yang Cui, Sheng-kang Liang, Qiu-fang Cao, Ke-ji Sun (2009) Application of Rhamnolipid Biosurfactant in Heavy Oil Viscosity Reduction. Modern Chem Ind; Master Thesis; 2011-02-21Google Scholar
  117. 117.
    Md Noh NA, Salleh SM, Mohamad Ibrahim MN, Mohd Yahya AR (2011) Pseudomonas aeruginosa USM-AR2 culture containing biosurfactant facilitates crude oil distillation process. In: Proceedings of 2011 International Conference on Biotechnology and Environment Management, vol 18. Press, SingapooreGoogle Scholar
  118. 118.
    Planckaert M (2005) Oil reservoirs and oil production. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, DCGoogle Scholar
  119. 119.
    Wang Q, Fang X, Bai B, Liang X, Shuler PJ, Goddard WA, Tang Y (2007) Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol Bioeng 98:842–853CrossRefGoogle Scholar
  120. 120.
    Pornsunthorntawee O, Arttaweeporn N, Paisonjit T, Smboonthanate P, Abe M, Rajiravanit R, Chavades S (2008) Isolation and comparison of biosurfactants produced by B. subtilis PT2 of P. aeruginosa SP4 for microbial surfactant enhanced oil recovery. Biochem Eng J 42:172–179CrossRefGoogle Scholar
  121. 121.
    Amani H, Müller MM, Syldatk C, Hausmann R (2013) Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery. Appl Biochem Biotechnol 170:1080–1093CrossRefGoogle Scholar
  122. 122.
    Singh P, Cameotra SS (2004) Enhancement of metal bioremediation by use of microbial surfactants. Biochem Biophys Res Commun 319:291–297CrossRefGoogle Scholar
  123. 123.
    El Zeftawy MAM, Mulligan CN (2011) Use of rhamnolipid to remove heavy metals from wastewater by micellar-enhanced ultrafiltration (MEUF). Sep Purif Technol 77:120–127CrossRefGoogle Scholar
  124. 124.
    Mulligan CN, Wang S (2006) Remediation of heavy metal-contaminated soil by a rhamnolipid foam. Eng Geol 85:75–81CrossRefGoogle Scholar
  125. 125.
    Juwarkar AA, Dubey KV, Nair A, Singh SK (2008) Bioremediation of multi-metal contaminated soil using biosurfactant—a novel approach. Ind J Microbiol 48:142–146CrossRefGoogle Scholar
  126. 126.
    Aşçi Y, Nurbas M, Açikel YS (2008) A comparative study for the sorption of Cd (II) by K-feldspar and sepiolite as soil components and the recovery of Cd(II) using rhamnolipid biosurfactant. J Env Manag 88:383–392CrossRefGoogle Scholar
  127. 127.
    Wang S, Mulligan CN (2009) Rhamnolipid biosurfactant-enhanced soil flushing for the removal of arsenic and heavy metals from mine tailings. Process Biochem 44:296–301CrossRefGoogle Scholar
  128. 128.
    Basak G, Das N (2014) Characterization of sophorolipid biosurfactant produced by Cryptococcus sp. VITGBN2 and its application on Zn(II) removal from electroplating wastewater. J Env Biol 35:1087–1094Google Scholar
  129. 129.
    Mulligan CN, Yong RN, Gibbs BF (2001) Heavy metal removal from sediments by biosurfactants. J Hazard Mater 85:111–125CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Inès Mnif
    • 1
    • 2
    • 3
  • Semia Ellouz-Chaabouni
    • 1
    • 3
  • Dhouha Ghribi
    • 1
    • 3
    • 4
  1. 1.Unit Enzymes and BioconversionNational School of Engineers, ENISSfaxTunisia
  2. 2.Faculty of Sciences of GabesGabesTunisia
  3. 3.Higher Institute of BiotechnologySfaxTunisia
  4. 4.Laboratoire d’amélioration des plantes et Valorization des AgroressourcesNational School of EngineersSfaxTunisia

Personalised recommendations