Journal of Polymers and the Environment

, Volume 26, Issue 5, pp 1930–1939 | Cite as

Urea Controlled-Release Fertilizer Based on Gelatin Microspheres

  • Jianwei Tang
  • Junyi Hong
  • Yong Liu
  • Baoming Wang
  • Quanxian Hua
  • Li Liu
  • Danyang Ying
Original Paper


Gelatin microsphere, as a sustained release urea carrier, was prepared by an emulsion–cross linking method with glutaraldehyde (GA) as a cross-linking agent. The influence of urea/gelatin ratio, emulsifier, GA concentration, and cross-linking time on the urea loading and encapsulation efficiency was investigated using response surface methodology. It was found that the urea/gelatin ratio had greater impact on urea loading and encapsulation efficiency than other factors. Equilibrium swelling of microspheres were performed in distilled water, and as expected, the water uptake decreased with the increase of GA as well as the reaction time. The cumulative release of urea from the microspheres decreased with the increase of reaction time and urea release presented a Fickian trend, indicating a diffusion controlled urea release mechanism. The insight from this study is useful to the design and process of controlled release urea fertilizers.

Graphical Abstract


Gels Crosslinking Controlled release Microspheres Urea Gelatin 



Authors would like to acknowledge the funding from the China National Key Research & Development Program (Grant No. 2016YFD0300805) and the Zhengzhou University Seed Funding for National Major Science & Technology Foundation Program in 2015.


  1. 1.
    Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Nature 418:671CrossRefGoogle Scholar
  2. 2.
    Ayoub AT (1991) Nutr Cycl Agroecosyst 55:117CrossRefGoogle Scholar
  3. 3.
    Gerbens-Leenes PW, Nonhebel S, Ivens W (2002) Agric Ecosyst Environ 90:47CrossRefGoogle Scholar
  4. 4.
    Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) Nat Geosci 1:636CrossRefGoogle Scholar
  5. 5.
    Vitousek PM, Naylor R, Crews T, David MB, Drinkwater LE, Holland E, Johnes PJ, Katzenberger J, Martinelli LA, Matson PA, Nziguheba G, Ojima D, Palm CA, Robertson GP, Sanchez PA, Townsend AR, Zhang FS (2009) Science 324:1519CrossRefGoogle Scholar
  6. 6.
    Chatterjee R (2009) Environ Sci Technol 43:1659CrossRefGoogle Scholar
  7. 7.
    Azeem B, KuShaari K, Man ZB, Basit A, Thanh TH (2014) J Control Release 181:11CrossRefGoogle Scholar
  8. 8.
    Dave AM, Mehta MH, Aminabhavi TM, Kulkarni AR, Soppimath KS (1999) Polymer 38:675Google Scholar
  9. 9.
    Yang YC, Zhang M, Li Y, Fan XH, Geng YQ (2012) J Agric Food Chem 60:11229CrossRefGoogle Scholar
  10. 10.
    Liu YH, Wang TJ, Qin L, Jin Y (2008) Powder Technol 183:88CrossRefGoogle Scholar
  11. 11.
    Li QS, Wu S, Ru TJ, Wang LM (2012) J Wuhan Univ Technol 27:126CrossRefGoogle Scholar
  12. 12.
    Niu YS, Li HC (2012) Ind Eng Chem Res 51:12173CrossRefGoogle Scholar
  13. 13.
    Ni BL, Liu MZ, Yu LS, Xie LH, Wang YF (2010) J Agric Food Chem 58:12373CrossRefGoogle Scholar
  14. 14.
    Mulder WJ, Gosselink RJA, Vingerhoeds MH, Harmsen PFH, Eastham D (2011) Ind Crops Prod 34:915CrossRefGoogle Scholar
  15. 15.
    Melaj MA, Daraio ME (2013) J Appl Polym Sci 130:2422CrossRefGoogle Scholar
  16. 16.
    Mikkelsen RL (1994) Nutr Cycl Agroecosyst 38:53Google Scholar
  17. 17.
    Chen YS, Chang JY, Cheng CY, Tsai FJ, Yao CH, Liu BS (2007) Macromol Biosci 26:3911Google Scholar
  18. 18.
    He SL, Zhou ZH, Peng C, Huang HH, Xiang LJ, Cao DF, Zhou H, Chen J, Ou BL, Liu Q, Zeng WN, Liu LH (2016) Mater Technol 31:145–152Google Scholar
  19. 19.
    Tabata Y, Ikada Y (1998) Adv Drug Deliv Rev 31:287CrossRefGoogle Scholar
  20. 20.
    Olde Damink LHH, Dijkstra PJ, Van Luyn MJA, Van Wachem PB, Nieuwenhuis P, Feijen J (1995) J Mater Sci 6:460Google Scholar
  21. 21.
    Iwanaga K, Yabuta T, Kakemi M, Morimoto K, Tabata Y, Ikada Y (2003) J Microencapsul 20:767CrossRefGoogle Scholar
  22. 22.
    Hao ZH, Wu HT, Hao LH, Zhao YD, Ding ZP, Yang FF, Qu BH (2013) J Appl Polym Sci 130:2369CrossRefGoogle Scholar
  23. 23.
    Naz MY, Sulaiman SA (2016) J Control Release 225:109CrossRefGoogle Scholar
  24. 24.
    Tabata Y, Ikada Y (1989) Pharm Res 6:422CrossRefGoogle Scholar
  25. 25.
    Zuo XJ, Wang ZX, Dai XM, Zhou Y, Ma XJ (2006) Spectrosc Spect Anal 26:1151Google Scholar
  26. 26.
    Ritger PL, Peppas NA (1987) J Control Release 5:37CrossRefGoogle Scholar
  27. 27.
    Xie LH, Lu SY, Liu MZ, Gao CM, Wang XG, Wu L (2013) J Agric Food Chem 61:3382CrossRefGoogle Scholar
  28. 28.
    Hussain MR, Devi RR, Maji TK (2012) Iran Polym J 21:473CrossRefGoogle Scholar
  29. 29.
    Ji Y, Zhang XH, GUO R (2004) Acta Chim Sin 62:345Google Scholar
  30. 30.
    Kajjari PB, Manjeshwar LS, Aminabhavi TM (2011) Ind Eng Chem Res 50:7833CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Chemical Engineering and EnergyZhengzhou UniversityZhengzhouChina
  2. 2.National Centre of Research & Popularization on Calcium, Magnesium, Phosphate and Compound Fertilizer TechnologyZhengzhouChina
  3. 3.CSIRO Agriculture and FoodWerribeeAustralia

Personalised recommendations