Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 5, pp 1903–1919 | Cite as

Comparative Investigations on Optimum Polymerization Conditions for the Synthesis of a Sustainable Poly(Lactic Acid)

  • Mustafa Abu Ghalia
  • Yaser Dahman
Original Paper

Abstract

The development of synthetic biodegradable polymers using solvent free polymerization has a unique potential to be used as sustainable polymers in biomedical applications. The aim of this work was to synthesize and characterize a sustainable class of poly(lactic acid) (PLA) under different operating conditions via direct polycondensation of lactic acid (LA). Several parameters were tested including the absence of solvents and catalysts on the polymerization, in addition to polymerization temperature and time. Polymerization conditions were evaluated using response surface method (RSM) to optimize the impact of temperature, time, and catalyst. Results showed that molecular weight (Mw) of PLA increased with increasing polymerization time. Highest Mw of 28.4 kD with relatively a broad polydispersity 1.9 was achieved at polymerization temperature 170 °C at 24 h in the free solvent polymerization. This led to a relevant inherent viscosity of 0.37 dl/g. FTIR spectra exhibited a disappearance of the characteristic peak of the hydroxyl group in LA at 3482 cm−1 by increasing the intensity of carbonyl group. The 1H nuclear magnetic resonance (NMR) exhibited the main chain at 5.22 ppm and the signal of methyl proton at 1.61 ppm as well as a signal at 4.33 and 1.5 assigned to the methane proton next to the terminal hydroxyl group and carboxyl group respectively. Meanwhile, the PLA synthesized with a catalyst [Sn(Oct)2] in a free solvent demonstrated comparatively high thermal transition properties of glass transition, melting, and crystallinity temperatures of 48, 106, and 158 °C, respectively. These results are of significant interest to further expand the use of PLA in biomedical applications.

Keywords

Poly(lactic acid) Sustainable polymer Solvent-free polymerization Optimum polymerization conditions 

Notes

Acknowledgements

Authors would like to acknowledge financial support from Agriculture and Agri-Food Canada, the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Faculty of Engineering and Architectural Science at Ryerson University in Toronto, Canada.

References

  1. 1.
    Sodergard A, Stolt M (2002) J Prog Polym Sci 27(6):1123–1163CrossRefGoogle Scholar
  2. 2.
    Tina E, Carlos V, Juergen (2012) Chem Soc Rev 39:3317–3333Google Scholar
  3. 3.
    Salehpour S, Dubé MA (2008) Green Chem 10:329–334Google Scholar
  4. 4.
    Luong ND, Moon ISD, Lee D (2008) Mat Sci Eng C 28:1242–1249CrossRefGoogle Scholar
  5. 5.
    Mazarro R, Gracia I, Rodrıguez JF (2012) Polym Int 61:265–273CrossRefGoogle Scholar
  6. 6.
    Garlotta D (2002) J Polym Environ 63:1566–2543Google Scholar
  7. 7.
    Josef B, Haworth NL, Friedrich GS, Brigitte V, Christopher B-K, Albena L (2016) ACS Macro Lett 5(9):1023–1028CrossRefGoogle Scholar
  8. 8.
    Hamza MN, Yaser D (2014) Can J Chem Eng 92:1895–1902CrossRefGoogle Scholar
  9. 9.
    Murphy CM (2010) J Biomat 31:461–466CrossRefGoogle Scholar
  10. 10.
    Lichte P (2011) J Injury 42:569–573CrossRefGoogle Scholar
  11. 11.
    Nowsheen G, Archana B-L, Gary L (2013) J Polym Int 62:523–533CrossRefGoogle Scholar
  12. 12.
    Harsche M, Atorti G, Morbidelli M (2007) Macr React Eng 1:611–621CrossRefGoogle Scholar
  13. 13.
    Kaitian X, Kozluca A, Denkbas EB (1996) J Chem 20:43–53Google Scholar
  14. 14.
    Hyung WL, Rizki I, Daniel P, Hermawan P, Johnner S (2015) J Eng Technol Sci 47(4):364–373CrossRefGoogle Scholar
  15. 15.
    Moon SI, Lee CW, Miyamoto M, Kimura Y (2000) J Polym Sci A 38:1673–1679CrossRefGoogle Scholar
  16. 16.
    Moon S-L, Lee CW, Taniguchi I, Miyamoto M, Kimura Y (2001) J Polym 42:5059–5062CrossRefGoogle Scholar
  17. 17.
    Marques DS, Gil MH, Baptista G (2013) J Appl Polym Sci 128:2145–2151Google Scholar
  18. 18.
    Yuying X, Jong-Soon P, Soon-Kook K (2016) Polym Membr 8(3):315–322Google Scholar
  19. 19.
    Jian-Bo Z, Eugene Y, Chen X (2015) J Am Chem Soc 137(39):12506–12509CrossRefGoogle Scholar
  20. 20.
    Emilia C, Takanari M, Wojciech S, Takao A (2016) J Polym Res 23:132–146CrossRefGoogle Scholar
  21. 21.
    Andreas S, Hans HG (2015) Chem Soc Rev 44:1526–1560CrossRefGoogle Scholar
  22. 22.
    Choubisa B, Patel M, Dholakiya B (2012) Res Chem Intermed 6:3063–3070Google Scholar
  23. 23.
    Kohn RD, Pan Z, Sun J, Liang C (2003) Catal Commun 14:33–37CrossRefGoogle Scholar
  24. 24.
    Jeane P, De A, Reinaldo C, Silva J, Lima C, Pankaj A, Tomas J, Melo D (2016) Macromol Symp 367:82–89CrossRefGoogle Scholar
  25. 25.
    Yaoming Z, Zhoayang W (2007) J Spring 2:178–182Google Scholar
  26. 26.
    Durmaz H, Dag A, Hizal G (2010) J Polym Sci A 48:5083–5091CrossRefGoogle Scholar
  27. 27.
    Harshe YM, Storti G, Morbidelli (2007) React Eng 1:611–621Google Scholar
  28. 28.
    Bassam A, Sweileh L, Yusuf M (2010) J Mol 15:3661–3682CrossRefGoogle Scholar
  29. 29.
    Katiyar V, Nanavati H (2010) Polym Chem 1:1491–1500CrossRefGoogle Scholar
  30. 30.
    Shyamroy S, Patnaik B, Sivaram S (2015) Polym Bull 72(3):405–415CrossRefGoogle Scholar
  31. 31.
    Lee C, Hong S (2014) Mod Chem Appl 2:1–5CrossRefGoogle Scholar
  32. 32.
    Tayyba G, Muhammad I, Zahid A, Tahir A, Zubia Z, Asma T, Muhammad K, Nudrat E, Sajid M (2014) J Rad Res Appl Sci 7:222–229, http://www.sciencedirect.com/science/article/pii/S1687850714000314
  33. 33.
    Laonuad P, Chaiyut N, Ksapabute B (2010) Rap Common 8:1200–1202.Google Scholar
  34. 34.
    Cheolho L, Sungyeap H (2014) Mod Chem Appl 2(4):1–5Google Scholar
  35. 35.
    Robson F, Storey F, John W (2002) Macromole 35:1504–1512CrossRefGoogle Scholar
  36. 36.
    Hengxing Y, Nanxun H, Chaosheng W, Zhilian T (2003) J Appl Polym Sci 88:2557–2562CrossRefGoogle Scholar
  37. 37.
    Kwaambwa HM, Goodwin JW, Hughes RW (2007) Coll Surf A 294:12–19CrossRefGoogle Scholar
  38. 38.
    Najafi N, Heuzey MC, Carreau PJ (2012) Polym Degrad Stab 97:554–565CrossRefGoogle Scholar
  39. 39.
    Fang L, Qi R, Liu L (2009) Int J Polym Sci. doi: 10.1155/2009/929732 Google Scholar
  40. 40.
    Liana SC, Jonas MCC, Joicy SS, Maria José AS, Sílvia CLD, José AD (2016) J Polym Res 23 107–117CrossRefGoogle Scholar
  41. 41.
    Tonimar DS, Jacques D (2016) Polym Int 65(7):811–819CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Chemical EngineeringRyerson UniversityTorontoCanada

Personalised recommendations