Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 4, pp 1715–1726 | Cite as

Biocomposite Fiber-Matrix Treatments that Enhance In-Service Performance Can Also Accelerate End-of-Life Fragmentation and Anaerobic Biodegradation to Methane

  • Cecily A. Ryan
  • Sarah L. Billington
  • Craig S. Criddle
Original Paper

Abstract

Biodegradable resins can enhance the environmental sustainability of wood-plastic composites (WPCs) by enabling methane (CH\(_4\)) recovery via anaerobic digestion (AD). An under appreciated step in biocomposite AD is the role of cracking and fragmentation due to moisture uptake by the wood fiber (WF) fraction. Here, we use batch microcosms to simulate AD at end-of-life and to assess the effects of fiber-matrix treatments used to retard in-service moisture uptake. The composites evaluated were injection molded poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with WF (0, 20%) using two fiber-matrix compatibilization treatments: (1) hydrophobic silane treatment of the wood fiber and (2) grafting of hydrophilic maleic anhydride groups to the PHBV matrix. Both treatments accelerated rates of mass loss and CH\(_4\) production by a factor of 1.2–2.3 compared to neat PHBV. The fragmentation rate, as measured by mass loss, increased significantly for treated samples compared to untreated samples. A ranking of test samples from lowest to highest rates of mass loss gave the following sequence: neat PHBV \(\approx\) maleated PHBV < PHBV plus untreated WF < maleated PHBV plus untreated WF < PHBV plus silane-treated WF. Compared to the untreated samples, maleic anhydride treatment increased the mass loss rate by 30%, and silane treatment increased the mass loss rate by 92%. Onset of cracking in silane-treated composites was observed at 2 weeks (using X-ray micro-computed tomography). At the same time, solid mass loss and CH\(_4\) production peaked, implicating cracking and physical disintegration as the rate-limiting step for accelerated anaerobic degradation. When modified to account for bioplastic matrix degradation, a previously derived moisture-induced damage model could predict the onset of composite fragmentation at end-of-life. These results are significant for design of bio-WPCs and demonstrate that treatments designed to improve in-service performance can also improve end-of-life options.

Keywords

Biodegradable plastic Biocomposite Wood-plastic composites Anaerobic degradation Fragmentation 

Notes

Acknowledgements

The authors thank BioProcess Control, SeaHold LLC, and Team Biogas for their generous support and collaboration with the AMPTS unit. We also thank the City of San Jose and the employees of the San Jose Waste Water Treatment Plant for their assistance in obtaining inoculum for these experiments. Part of this work was performed at the Stanford Nano Shared Facilities (SNSF) and Soft and Hybrid Materials Facility (SMF) at Stanford University. Micro-CT imaging and analysis were performed at the Stanford Small Animal Imaging Facility, and in particular we thank Dr. Timothy Doyle for his expertise in establishing scan conditions and analysis and Dr. Frezghi Habte for his assistance in data analysis. This work was funded by NSF CMMI [Grant 0900325], California EPA Department of Toxic Substances Control [Project Ref. No. 07T3451], CalRecycle [Contract No. DRRR10020], and individual graduate funding from the EPA Star Graduate Fellowship and the Stanford Civil Engineering Charles H. Leavell Graduate Fellowship.

References

  1. 1.
    Flores-Hernández M, Reyes González I, Lomelí-Ramírez M, Fuentes-Talavera F, Silva-Guzmán J, Cerpa-Gallegos M, García-Enríquez S (2014) J Compos Mater 48:209CrossRefGoogle Scholar
  2. 2.
    F. Associates (1998) Characterization of building-related construction and demolition Debris in the United States, Tech Rep EPA530-R-98-010, U.S. Environmental Protection AgencyGoogle Scholar
  3. 3.
    AIA Sustainability Discussion Group (2008) Construction waste management strategies. Tech Rep BP 10.05.36, American Institute of ArchitectsGoogle Scholar
  4. 4.
    Office of Resource Conservation and Recovery (5306P) (2015) Adv Sustain Mater Manag Facts and Figures Report, Tech Rep EPA530-R-15-002, U.S. Environmental Protection AgencyGoogle Scholar
  5. 5.
    Miller SA, Srubar WV III, Billington SL, Lepech MD (2015) Resour Conserv Recycl 99:72CrossRefGoogle Scholar
  6. 6.
    Netravali AN, Chabba S (2003) Mater Today 6:22CrossRefGoogle Scholar
  7. 7.
    Rostkowski KH, Criddle CS, Lepech MD (2012) Environ Sci Technol 46:9822Google Scholar
  8. 8.
    Avella M, Rota G, Martuscelli E, Raimo M, Sadocco P, Elegir G, Riva R (2000) J Mater Sci 35:829CrossRefGoogle Scholar
  9. 9.
    Teramoto N, Urata K, Ozawa K, Shibata M (2004) Polym Degrad Stab 86:401CrossRefGoogle Scholar
  10. 10.
    Felton CC, De Groot C (1996) Rodney. For Prod J 46:37Google Scholar
  11. 11.
    Bismarck A, Mohanty AK, Aranberri-Askargorta I, Czapla S, Misra M, Hinrichsen G, Springer J (2001) Green Chem 3:100CrossRefGoogle Scholar
  12. 12.
    Srubar W, Billington S (2013) Compos Part A 50:81CrossRefGoogle Scholar
  13. 13.
    Srubar WV III, Miller SA, Lepech MD, Billington SL (2014) Constr Build Mater 71:589CrossRefGoogle Scholar
  14. 14.
    Srubar WV III, Pilla S, Wright ZC, Ryan CA, Greene JP, Frank CW, Billington SL (2012) Compos Sci Technol 72:708CrossRefGoogle Scholar
  15. 15.
    Srubar WV, Frank CW, Billington SL (2012) Polymer 53:2152CrossRefGoogle Scholar
  16. 16.
    Molitoris HP, Moss ST, De Koning G, Jendrossek D (1996) Appl Microbiol Biotechnol 46:570CrossRefGoogle Scholar
  17. 17.
    Kyrikou I, Briassoulis D (2007) J Polym Environ 15:125CrossRefGoogle Scholar
  18. 18.
    Imam S, Gordon S, Shogren R, Greene R (1995) J Environ Polym Degr 3:205CrossRefGoogle Scholar
  19. 19.
    Imam S, Chen L, Gordon S, Shogren R, Weisleder D, Greene R (1998) J Environ Polym Degr 6:91CrossRefGoogle Scholar
  20. 20.
    Imam S, Gordon S, Shogren R, Tosteson T, Govind N, Greene R (1999) Appl Environ Microbiol 65:431Google Scholar
  21. 21.
    Calderón K, González-Martínez A, Gómez-Silván C, Osorio F, Rodelas B, González-López J (2013) Int J Mol Sci 14:18572CrossRefGoogle Scholar
  22. 22.
    Zwietering M, Jongenburger I, Rombouts F, Van’t Riet K (1990) Appl Environ Microbiol 56:1875Google Scholar
  23. 23.
    López S, Prieto M, Dijkstra J, Dhanoa M, France J (2004) Int J Food Microbiol 96:289CrossRefGoogle Scholar
  24. 24.
    Ghatak MD, Mahanta P (2014) Carbon 63:35Google Scholar
  25. 25.
    Lay J-J, Li Y-Y, Noike T (1996) Doboku Gakkai Ronbunshu 1996:101CrossRefGoogle Scholar
  26. 26.
    Lay J-J, Li Y-Y, Noike T (1998) J Environ Eng 124:730CrossRefGoogle Scholar
  27. 27.
    Ryan CA, Billington SL, Criddle CS (2017) Bioresour Technol 227:205CrossRefGoogle Scholar
  28. 28.
    Gordon S, Imam S, Shogren R, Govind N, Greene R (2000) J Appl Polym Sci 76:1767CrossRefGoogle Scholar
  29. 29.
    Tong X, Smith LH, McCarty PL (1990) Biomass 21:239CrossRefGoogle Scholar
  30. 30.
    Barlaz M (2006) Waste Manag 26:321CrossRefGoogle Scholar
  31. 31.
    Budwill K, Fedorak PM, Page WJ (1992) Appl Environ Microbiol 58:1398Google Scholar
  32. 32.
    Reischwitz A, Stoppok E, Buchholz K (1998) Biodegradation 8:313CrossRefGoogle Scholar
  33. 33.
    Shin P, Kim M, Kim J (1997) J Polym Environ 5:33Google Scholar
  34. 34.
    Gutierrez-Wing MT, Stevens BE, Theegala CS, Negulescu II, Rusch KA (2010) J Environ Eng 136:709CrossRefGoogle Scholar
  35. 35.
    Nishida H, Tokiwa Y (1993) J Polym Environ 1:65CrossRefGoogle Scholar
  36. 36.
    Tokiwa Y, Calabia B (2007) J Polym Environ 15:259CrossRefGoogle Scholar
  37. 37.
    Ryan CA, Billington SL, Criddle CS (2017) Compos Part A 95:388CrossRefGoogle Scholar
  38. 38.
    Stark N (2001) J Thermoplast Compos Mater 14:421CrossRefGoogle Scholar
  39. 39.
    ASTM, D5526-94 (2002) Standard test method for determining anaerobic biodegradation of plastic materials under accelerated landfill conditions. ASTM International, West ConshohockenGoogle Scholar
  40. 40.
    Katdare A, Chaubal M (2006) Excipient development for pharmaceutical, biotechnology, and drug delivery systems. CRC Press, Boca ratonCrossRefGoogle Scholar
  41. 41.
    Wright ZC (2013) Poly(hydroxybutyrate-co-valerate) biodegradable foams the effects of processing, nanoscale additives, and aging. Ph.D. thesis, Stanford University, StanfordGoogle Scholar
  42. 42.
    ASTM, D5210-92(2007): Standard test method for determining the anaerobic biodegradation of plastic materials in the presence of municipal sewage sludge, ASTM International (2007)Google Scholar
  43. 43.
    Shelton DR, Tiedje JM (1984) Appl Environ Microbiol 47:850Google Scholar
  44. 44.
    Wu WM, Hickey RF, Zeikus JG (1991) Appl Environ Microbiol 57:3438Google Scholar
  45. 45.
    Kenealy W, Zeikus JG (1981) J Bacteriol 146:133Google Scholar
  46. 46.
    Association American Public Health (1998) American Water Works Association and Water Environment Federation. American Public Health Association, Standard Methods for the Examination of Water and WastewaterGoogle Scholar
  47. 47.
    Gartiser S, Wallrabenstein M, Stiene G (1998) J Environ Polym Degr 6:159CrossRefGoogle Scholar
  48. 48.
    Morse MC (2010) Anaerobic biodegradation of biocomposites for the building industry. Ph.D. thesis, Stanford University, StanfordGoogle Scholar
  49. 49.
    George J, Sreekala MS, Thomas S (2001) Polym Engi Sci 41:1471CrossRefGoogle Scholar
  50. 50.
    Anderson SP (2007) Wood fiber reinforced bacterial biocomposites: effects of interfacial modifiers and processing on mechanical and physical properties. Ph.D. thesis, Washington State University, PullmanGoogle Scholar
  51. 51.
    Behrends A, Klingbeil B, Jendrossek D (1996) FEMS Microbiol Lett 143:191CrossRefGoogle Scholar
  52. 52.
    Calabia BP, Tokiwa Y (2006) Biotechnol Lett 28:383CrossRefGoogle Scholar
  53. 53.
    Gangoiti J, Santos M, Prieto MA, de la Mata I, Serra JL, Llama MJ (2012) Appl Environ Microbiol 78:7229CrossRefGoogle Scholar
  54. 54.
    Erickson HP (2009) Biol Proced Online 11:32CrossRefGoogle Scholar
  55. 55.
    Narihiro T, Sekiguchi Y (2007) Curr Opin Biotech 18:273CrossRefGoogle Scholar
  56. 56.
    Bergey DH, Whitman WB, Goodfellow M, Kämpfer P, Busse H-J (eds) (2012) Bergey’s manual of systematic bacteriology. Springer, New YorkGoogle Scholar
  57. 57.
    Morse MC, Liao Q, Criddle CS, Frank CW (2011) Polymer 52:547CrossRefGoogle Scholar
  58. 58.
    Joseph EG, Wilkes GL, Baird DG (1985) Polym Eng Sci 25:377CrossRefGoogle Scholar
  59. 59.
    Corrêa M, Rezende M, Rosa D, Agnelli J, Nascente P (2008) Polym Test 27:447CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Civil and Envrionmental EngineeringStanford University StanfordUSA
  2. 2.Department of Mechanical and Industrial EngineeringMontana State UniversityBozemanUSA

Personalised recommendations