Journal of Polymers and the Environment

, Volume 26, Issue 4, pp 1320–1327 | Cite as

Thermal Properties and Crystallization Behavior of Novel Biodegradable Poly(hexamethylene succinate-co-6 mol% butylene succinate) and Poly(hexamethylene succinate)

  • Kangjing Zhang
  • Huiying Yang
  • Zhaobin Qiu
Original Paper


In this research, the thermal properties and crystallization behavior of novel poly(hexamethylene succinate-co-6 mol% butylene succinate) (PHBS) and its homopolymer poly(hexamethylene succinate) (PHS) were extensively studied. With respect to PHS, the introduction of a small content of butylene succinate (BS) unit slightly reduces the melting point and equilibrium melting point but hardly influences the glass transition temperature of PHBS. Despite crystallization temperature, PHS and PHBS crystallize through the same crystallization mechanism. At the same crystallization temperature, PHBS crystallizes more slowly than PHS; furthermore, lowering crystallization temperature enhances the crystallization rates of PHBS and PHS. The spherulites morphologies were observed for both of them, with the spherulites nucleation density of the copolymer being smaller than that of the homopolymer. PHBS and PHS share the same crystal structures, indicative of the location of BS unit in the amorphous region.


Thermal properties Crystallization kinetics Morphology Poly(hexamethylene succinate) 



This study was funded by the National Natural Science Foundation, China (Grant Numbers 51373020, 51573016 and 51521062).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Gesti S, Casas M, Puiggali J (2007) Crystalline structure of poly(hexamethylene succinate) and single crystal degradation studies. Polymer 48:5088–5097CrossRefGoogle Scholar
  2. 2.
    Franco L, Puiggali J (2003) Crystallization kinetics of poly(hexamethylene succinate). Eur Polym J 39:1575–1583CrossRefGoogle Scholar
  3. 3.
    Gan Z, Abe H, Kurokawa H, Doi Y (2001) Solid-state microstructure, thermal properties, and crystallization of biodegradable poly(butylene succinate) (PBS) and its copolyesters. Biomacromolecules 2:605–613CrossRefGoogle Scholar
  4. 4.
    Zhu C, Zhang Z, Liu Q, Wang Z, Jin J (2003) Synthesis and biodegradation of aliphatic polyesters from dicarboxylic acids and diols. J Appl Polym Sci 90:982–990CrossRefGoogle Scholar
  5. 5.
    Li X, Hong Z, Sun J, Geng Y, Huang Y (2009) Identifying the phase behavior of biodegradable poly(hexamethylene succinate-co-hexamethylene adipate) copolymers with FTIR. J Phys Chem B 113:2695–2704CrossRefGoogle Scholar
  6. 6.
    Liang Z, Pan P, Zhu B, Inoue Y (2011) Isomorphic crystallization of aliphatic copolyesters derived from 1, 6-hexanediol: effect of the chemical structure of comonomer units on the extent of cocrystallization. Polymer 52:2667–2676CrossRefGoogle Scholar
  7. 7.
    Wang G, Qiu Z (2012) Synthesis, crystallization kinetics and morphology of novel biodegradable poly(butylene succinate-co-hexamethylene succinate) copolyesters. Ind Eng Chem Res 51:16369–16376CrossRefGoogle Scholar
  8. 8.
    Yang H, Qiu Z (2013) Crystallization kinetics and morphology of novel biodegradable poly(hexamethylene succinate-co-3 mol% ethylene succinate) with low and high molecular weights. Ind Eng Chem Res 52:3537–3542CrossRefGoogle Scholar
  9. 9.
    Ihn K, Yoo E, Im S (1995) Structure and morphology of poly(tetramethylene succinate) crystals. Macromolecules 28:2460–2464CrossRefGoogle Scholar
  10. 10.
    Qiu Z, Fujinami S, Komura M, Nakajima K, Ikehara T, Nishi T (2004) Nonisothermal crystallization kinetics of poly(butylene succiante). Polym J 36:642–646CrossRefGoogle Scholar
  11. 11.
    Papageorgiou G, Bikiaris D (2005) Crystallization and melting behavior of three biodegradable poly(alkylene succinates). A comparative study. Polymer 46:12081–12092CrossRefGoogle Scholar
  12. 12.
    Papageorgiou G, Achilias S, Bikiaris D (2007) Crystallization kinetics of biodegradable poly(butylene succinate) under isothermal and nonisothermal conditions. Macromol Chem Phys 208:1250–1264CrossRefGoogle Scholar
  13. 13.
    Liu G, Zheng L, Zhang X, Li C, Jiang S, Wang D (2012) Reversible lamellar thickening induced by crystal transition in poly(butylene succinate). Macromolecules 45:5487–5493CrossRefGoogle Scholar
  14. 14.
    Yang F, Qiu Z (2011) Miscibility and crystallization behavior of biodegradable poly(butylene succinate)/tannic acid blends. Ind Eng Chem Res 50:11970–11974CrossRefGoogle Scholar
  15. 15.
    Yang Y, Qiu Z (2011) Crystallization kinetics and morphology of biodegradable poly(butylene succinate-co-ethylene succinate) copolyesters: effects of comonomer composition and crystallization temperature. CrystEngComm 13:2408–2417CrossRefGoogle Scholar
  16. 16.
    Wu H, Qiu Z (2012) Synthesis, crystallization kinetics and morphology of novel poly(ethylene succinate-co-ethylene adipate) copolymers. CrystEngComm 14:3586–3595CrossRefGoogle Scholar
  17. 17.
    Liu T, Petermann J (2001) Multiple melting behavior in isothermally cold-crystallized isotactic polystyrene. Polymer 42:6453–6461CrossRefGoogle Scholar
  18. 18.
    Qiu Z, Komura M, Ikehara T, Nishi T (2003) DSC and TMDSC study of melting behaviour of poly(butylene succinate) and poly(ethylene succinate). Polymer 44:7781–7785CrossRefGoogle Scholar
  19. 19.
    Papageorgiou G, Bikiaris D, Panayiotou C (2011) Novel miscible poly(ethylene sebacate)/poly(4-vinyl phenol) blends: miscibility, melting behavior and crystallization study. Polymer 52:4553–4561CrossRefGoogle Scholar
  20. 20.
    Wu H, Qiu Z (2012) A comparative study of crystallization, melting behavior, and morphology of biodegradable poly(ethylene adipate) and poly(ethylene adipate-co-5 mol% ethylene succinate). Ind Eng Chem Res 51:13323–13328CrossRefGoogle Scholar
  21. 21.
    Hoffman J, Weeks J (1965) X-ray study of isothermal thickening of lamellae in bulk polyethylene at the crystallization temperature. J Chem Phys 42:4301–4302CrossRefGoogle Scholar
  22. 22.
    Avrami M (1940) Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224CrossRefGoogle Scholar
  23. 23.
    Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys 9:177–184CrossRefGoogle Scholar
  24. 24.
    Wunderlich B (1976) Macromelecular physics, vol 2. Academic Press, New YorkGoogle Scholar
  25. 25.
    Gan Z, Abe H, Doi Y (2011) Crystallization, melting, and enzymatic degradation of biodegradable poly(butylene succinate-co-14 mol% ethylene succinate) copolyester. Biomacromolecules 2:313–321CrossRefGoogle Scholar
  26. 26.
    Yang Y, Qiu Z (2011) Crystallization and melting behavior of biodegradable poly(ethylene succinate-co-6 mol% butylene succinate). J Appl Polym Sci 122:105–111CrossRefGoogle Scholar
  27. 27.
    Papageorgiou G, Vassiliou A, Karavelidis V, Koumbis A, Bikiaris D (2008) Novel poly(propylene terephthalate-co-succinate) random copolymers: synthesis, solid structure, and enzymatic degradation study. Macromolecules 41:1675–1684CrossRefGoogle Scholar
  28. 28.
    Papageorgiou G, Bikiaris D (2007) Synthesis, cocrystallization, and enzymatic degradation of novel poly(butylene-co-propylene succinate) copolymers. Biomacromolecules 8:2437–2449CrossRefGoogle Scholar
  29. 29.
    Liu G, Zeng J, Huang C, Jiao L, Wang X, Wang Y (2013) Crystallization kinetics and spherulitic morphologies of biodegradable poly(butylene succinate-co-diethylene glycol succinate) copolymers. Ind Eng Chem Res 52:1591–1599CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of EducationBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations