Influence of Filler Particle Size on Physical Properties and Biodegradation of Biocomposites Based on Low-Density Polyethylene and Lignocellulosic Fillers


This study examined biocomposites based on low-density polyethylene (LDPE) and lignocellulosic fillers [wood flour (WF) and oil flax straw (FS)] selecting four size fractions of each lignocellulosic material as fillers for the composites. The primary aim was to evaluate the influence of fraction size on the composites’ basic properties; to accomplish this, the composites’ mechanical properties, thermal oxidation, thermophysical characteristics, and water absorption capacity were examined. Then microphotographs of the samples were created and length-to-diameter (L/D) ratio of the fillers was calculated, finding that the L/D ratio increased with increasing particle size. The particle size influenced the oxidative degradation and water absorption processes in composites with oil flax but not in those with WF. Biodegradation tests performed on the recovered soil found that the loss of mass in composites based on LDPE and FS was higher than in the same composites with WF. Moreover, at the initial stage of composting, the biodegradation rate correlated with the size of filler particles (i.e., the larger the particles, the higher the degradation rate of the biocomposite).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Pantyukhov P, Kolesnikova N, Popov A (2016) Polym Compos 37:1461

    CAS  Article  Google Scholar 

  2. 2.

    Mastalygina EE, Kolesnikova NN, Popov AA, Olkhov AA (2015) AIP Conf Proc 1683:020143. doi:10.1063/1.4932833

    Article  Google Scholar 

  3. 3.

    Zykova AK, Pantyukhov PV, Popov AA (2017) J Polym Eng Sci. doi:10.1002/pen.24626

    Google Scholar 

  4. 4.

    Robertson N-LM, Nychka JA, Alemaskin K, Wolodko JD (2013) J Appl Polym Sci 130:969

    CAS  Article  Google Scholar 

  5. 5.

    Altun Y, Dogan M, Bayramli M (2013) J Polym Environ 21:850

    CAS  Article  Google Scholar 

  6. 6.

    Arbelaiz A, Fernandez B, Cantero G, Llano-Ponte R, Valea A, Mondragon I (2005) Compos A 36:1637

    Article  Google Scholar 

  7. 7.

    Mukherjee P, Kao N (2011) J Polym Environ 19:714

    CAS  Article  Google Scholar 

  8. 8.

    Mirbagheri J, Tajvidi M, Hermanson JC, Ghasemi I (2007) J Appl Polym Sci 105:3054

    CAS  Article  Google Scholar 

  9. 9.

    Thirmizir MZA, Ishak ZAM, Taib RM, Rahim S, Jani SM (2011) J Polym Environ 19:263

    CAS  Article  Google Scholar 

  10. 10.

    Okubo K, Fujii T, Yamamoto Y (2004) Compos A 35:377

    Article  Google Scholar 

  11. 11.

    Ou R, Zhao H, Sui S, Song Y, Wang Q (2010) Compos A 41:1272

    Article  Google Scholar 

  12. 12.

    Ou R, Xie Y, Wang, Q Sui S, Wolcott MP (2014) Compos A 61:134

    CAS  Article  Google Scholar 

  13. 13.

    Ornaghi HL Jr, Poletto M, Zattera AJ, Amico SC (2014) Cellulose 21:177

    CAS  Article  Google Scholar 

  14. 14.

    Arauґjo JR, Waldman WR, De Paoli MA (2008) Polym Degrad Stab 93:1770

    Article  Google Scholar 

  15. 15.

    Ismail H, Rozman HD, Jaffri RM, Ishak ZAM (1997) J Eur Polym 33:1627

    CAS  Article  Google Scholar 

  16. 16.

    Fabiyi JS, McDonald AG (2010) Compos A 41:1434

    Article  Google Scholar 

  17. 17.

    Bazant P, Munster L, Machovsky M, Sedlak J, Pastorek M, Kozakova Z, Kuritka I (2014) Ind Crop Prod 62:179

    CAS  Article  Google Scholar 

  18. 18.

    Kim H-S, Kim S, Kim H-J, Yang H-S (2006) Thermochim Acta 451:181

    CAS  Article  Google Scholar 

  19. 19.

    Bouza R, Marco C, Naffakh M, Barral L, Ellis G (2011) Compos A 42:935

    Article  Google Scholar 

  20. 20.

    Faruk O, Sain M (2015) Biofiber reinforcements in composite materials. Woodhead Publishing, Cambridge

    Google Scholar 

  21. 21.

    Stark NM, Berger MJ (1997) In: Proceedings of the 4th international conference of wood fiber-plastic composites. Forest Products Society, Madison, pp 134–143

  22. 22.

    Bledzki AK, Faruk O (2003) Appl Compos Mater 10:365

    CAS  Article  Google Scholar 

  23. 23.

    Migneault S, Koubaa A, Erchiqui F, Chaala A, Englund K, Krause C, Wolcott M (2008) J Appl Polym Sci 110:1085

    CAS  Article  Google Scholar 

  24. 24.

    Nikitin VM, Obolenskaya AV, Schegolev VP (1978) Chemistry of wood and cellulose. Wood Industry, Moscow

  25. 25.

    Fengel D, Wegener G (1989) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

    Google Scholar 

  26. 26.

    Heuzé V, Tran G, Lebas F (2015) Feedipedia, a programme by INRA, CIRAD, AFZ and FAO.

  27. 27.

    Rebole A, Alvira P, Gonzalez G (1989) J Sci Food Agric 48:141

    CAS  Article  Google Scholar 

  28. 28.

    Shlyapnikov YA, Kiryushkin SG, Mar’in AP (1986) Antioxidative stability of polymers, Chemistry, Moscow (in Russian)

  29. 29.

    Emanuel NM, Denisov ET, Maizus ZK (1967) Liquid-phase oxidation of hydrocarbons. Plenum Press, New York, pp 9–10

    Google Scholar 

  30. 30.

    Monakhova TV, Nedorezova PM, Shlyapnikov YuA (2005) J Appl Polym Sci 99:808

    Article  Google Scholar 

  31. 31.

    Ozcelik O, Aktas L, Altan MC (2009) Express Polym Lett 12:797

    Article  Google Scholar 

  32. 32.

    Chelina MC (2013) Polym Degrad Stab 12:2419

    Article  Google Scholar 

  33. 33.

    American Standard ASTM D 5988-12 (2012) Standard test method for determining aerobic biodegradation of plastic materials in soil. ASTM International, West Conshohocken

    Google Scholar 

  34. 34.

    Ottenbrite R et al (1996) Hydrogels and biodegradable polymers for bioapplications. American Chemical Society, Washington, DC

    Google Scholar 

  35. 35.

    Zykova AK, Pantyukhov PV, Kolesnikova NN, Popov AA, Olkhov AA (2015) AIP Conf Proc 1683:020242. doi:10.1063/1.4932932

    Article  Google Scholar 

  36. 36.

    Nourbakhsh A, Karegarfard A, Ashori A, Nourbakhsh A (2010) J Thermoplast Compos Mater 23:169

    CAS  Article  Google Scholar 

  37. 37.

    Balasuriya PW, Ye L, Mai YW (2001) Compos A 32: 619

    Article  Google Scholar 

  38. 38.

    Göpferich A (1996) Biomaterials 17:103

    Article  Google Scholar 

  39. 39.

    Olkhov AA, Iordanskii AI, Shibryaeva LS, Tertyshnaya YuV (2015) Russ J Phys Chem B 9:652

    CAS  Article  Google Scholar 

  40. 40.

    Fakhrul T, Islam MA (2013), Procedia Eng 56:795

    CAS  Article  Google Scholar 

  41. 41.

    Russian Industrial Standard 16337-77 (1977) High-pressure polyethylene. Specifications (in Russian)

  42. 42.

    Bayerl T, Geith M, Somashekar AA, Bhattacharayya D (2014) Int Biodeter Biodegr 96:18

    Article  Google Scholar 

  43. 43.

    Espert A, Vilaplana F, Karlsson S (2004) Compos A 35:1267

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to P. V. Pantyukhov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zykova, A.K., Pantyukhov, P.V., Kolesnikova, N.N. et al. Influence of Filler Particle Size on Physical Properties and Biodegradation of Biocomposites Based on Low-Density Polyethylene and Lignocellulosic Fillers. J Polym Environ 26, 1343–1354 (2018).

Download citation


  • Low-density polyethylene
  • Lignocellulosic fillers
  • Wood flour
  • Flax straw
  • Biocomposites
  • Natural fibers
  • Biodegradation
  • Biodegradable polymer composites