Skip to main content

Soybean Oil Based Polylactic Acid Membranes: Synthesis and Degradation Characteristics

Abstract

Controlling the degradation parameters is one of the main challenges of preparing appropriate biomaterials for biomedical applications. In this study, the effect of soybean oil inclusion on hydrolytic degradation of polylactic acid (PLA) was investigated both in vitro and in vivo. PLA/oil membranes were prepared by using polymeric soybean oil (PSO), epoxidized soybean oil and soybean oil (SOYA) with their varied concentrations. Degradation of membranes was performed in vitro for 8 weeks period and in vivo for 4 weeks period. Weight loss, changes in molecular weight, thermal properties and morphological changes were studied during degradation. SOYA blended PLA membranes show the lowest degradation rates by bulk degradation after 4 weeks in vitro, followed by surface erosion for the first week. Approximately twofold high percentage weight losses of all membranes were obtained after 4 weeks of degradation in vivo in comparison with in vitro data. The significant weight loss, molecular weight loss and thermal property change for PSO blended membranes were determined during in vivo degradation which highlights the increase of degradation rate by bulk degradation. Drastic morphological changes were observed on surface of degraded membranes in vivo with large pores, cracks, fissures and large cavities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. de Tayrac R, Chentouf S, Garreau H, Braud C, Guiraud I, Boudeville P, Vert M (2008) J Biomed Mater Res B 85:529

    Article  Google Scholar 

  2. Lasprilla AJR, Martinez GAR, Jardini AL, Maciel Filho R (2012) Biotechnol Adv 30:321

    CAS  Article  Google Scholar 

  3. Merloz P, Minfelde R, Schelp C, Lavaste F, Huet-Olivier J, Faure C, Butel J (1995) Rev Chir Orthop Reparatrice Appar Mot 81:433

    CAS  Google Scholar 

  4. Athanasiou KA, Niederauer GG, Agrawal CM (1996) Biomaterials 17:93

    CAS  Article  Google Scholar 

  5. Tamai H, Igaki K, Kyo E, Kosuga K, Kawashima A, Matsui S, Komori H, Tsuji T, Motohara S, Vehata H (2000) Circulation 102:399

    CAS  Article  Google Scholar 

  6. Grizzi I, Garreau H, Li S, Vert M (1995) Biomaterials 16:305

    CAS  Article  Google Scholar 

  7. Vert M (1998) In: Walenkamp G (ed) Biomaterials in surgery. Georg Thieme Verlag, Stuttgart, pp 97–101

    Google Scholar 

  8. Höglund A, Odelius K, Albertsson AC (2012) ACS Appl Mater Interfaces 4:2788

    Article  Google Scholar 

  9. Auras R, Harte B, Selke S (2004) Macromol Biosci 4:835

    CAS  Article  Google Scholar 

  10. Hiljanen-Vainio M, Varpomaa P, Seppälä J, Törmälä P (1996) Macromol Chem Phys 197:1503

    CAS  Article  Google Scholar 

  11. Wang R, Wang S, Zhang Y (2009) J Appl Polym Sci 113:3095

    CAS  Article  Google Scholar 

  12. Bhardwaj R, Mohanty AK (2007) Biomacromolecules 8:2476

    CAS  Article  Google Scholar 

  13. Montini-Ballarin F, Caracciolo PC, Rivero G, Abraham GA (2016) Polym Degrad Stab 126:159

    CAS  Article  Google Scholar 

  14. Tsuji H, Ikada Y (1996) J Appl Polym Sci 60(13):2367

    CAS  Article  Google Scholar 

  15. Gaona LA, Gómez Ribellesa JL, Perillab JE, Lebourg M (2012) Polym Degrad Stab 97(9):1621

    CAS  Article  Google Scholar 

  16. Meier MAR, Metzger JO, Schubert US (2007) Chem Soc Rev 36:1788

    CAS  Article  Google Scholar 

  17. Miao S, Wang P, Su Z, Zhang S (2014) Acta Biomater 10:1692

    CAS  Article  Google Scholar 

  18. Lligadas G, Ronda JC, Galia M, Cadiz V (2013) Mater Today 16:337

    CAS  Article  Google Scholar 

  19. Aydın RST, Hazer B, Acar M, Gümüşderelioğlu M (2013) Polym Bull 70:2065

    Article  Google Scholar 

  20. Miao S, Sun L, Wang P, Liu R, Su Z, Zhang S (2012) Eur J Lipid Sci Technol 114:1165

    CAS  Article  Google Scholar 

  21. Hazer DB, Hazer B, Kaymaz F (2009) Biomed Mater 4:035011

    Article  Google Scholar 

  22. Liu Z, Xu Y, Cao L, Bao C, Sun H, Wang L, Daib K, Zhu L (2012) Soft Matter 8:5888

    CAS  Article  Google Scholar 

  23. Robertson ML, Chang K, Gramlich WM, Hillmyer MA (2010) Macromolecules 43:1807

    CAS  Article  Google Scholar 

  24. Chieng WB, İbrahim NA, Then YY, Loo YY (2014) Molecules 19:16024

    Article  Google Scholar 

  25. Emad A, Al-Mulla J, Suhail HA, Aowds AS (2011) Ind Crops Prod 33:23

    Article  Google Scholar 

  26. Fathilah A, Young-Wook C, Shin CK, Joon YY (2009) Polym Bull 62:91

    Article  Google Scholar 

  27. Hazer B (2014) J Polym Environ 22:200

    CAS  Article  Google Scholar 

  28. Li S, Vert M (1999) In: Mathiowitz E (ed) The encyclopedia of controlled drug delivery. Wiley, New York, pp 71–93

    Google Scholar 

  29. Sailema-Palate GP, Vidaurre A, Campillo-Fernández AJ, Castilla-Cortázar I (2016) Polym Degrad Stab 130:118

    CAS  Article  Google Scholar 

  30. Aydın RST, Akyol E, Hazer B (2017) JAOCS 94:413

    Article  Google Scholar 

  31. Araque-Monros MC, Vidaurrea A, Gil-Santos L, Gironés Bernabé S, Monleón-Pradasa M, Más-Estellés J (2013) Polym Degrad Stab 98:1563

    CAS  Article  Google Scholar 

  32. Kim K, Yu M, Zong X, Chiu J, Fang D, Seo YS, Hsiao BS, Chu B, Hadjiargyrou M (2003) Biomaterials 24(27):4977

    CAS  Article  Google Scholar 

  33. Lam CX, Savalani MM, Teoh SH, Hutmacher DW (2008) Biomed Mater 3:034108

    Article  Google Scholar 

  34. Li S, Garreau H, Vert M (1990) J Mater Sci Mater Med 1:198

    CAS  Article  Google Scholar 

  35. Al-Itrya R, Lamnawara K, Maazouz A (2012) Polym Degrad Stab 97:1898

    Article  Google Scholar 

  36. Tracy MA, Ward KL, Firouzabadian L, Wang Y, Dong N, Qian R, Zhang Y (1999) Biomaterials 20:1057

    CAS  Article  Google Scholar 

  37. Ma X, Oyamada S, Wu T, Robich MP, Wu H, Wang X, Buchholz B, McCarthy S, Bianchi CF, Sellke FW, Laham R (2011) J Biomed Mater Res A 96:632

    Article  Google Scholar 

  38. Menei P, Daniel V, Montero-Menei C, Brouillard M, Pouplard-Barthelaix A, Benoit JP (1993) Biomaterials 14:470

    CAS  Article  Google Scholar 

  39. Ali SA, Doherty PJ, Williams DF (1994) Biomaterials 15:779

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank financial supports of Turkish Scientific Research Council (TÜBİTAK) (Grant Number: 213M375) and Bülent Ecevit University Research Fund (Grant Number: 2014-39971044-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Seda Tığlı Aydın.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aydın, R.S.T., Akyol, E. & Hazer, B. Soybean Oil Based Polylactic Acid Membranes: Synthesis and Degradation Characteristics. J Polym Environ 26, 1262–1271 (2018). https://doi.org/10.1007/s10924-017-1032-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1032-3

Keywords

  • Biodegradable polymers
  • Polymer blends
  • PLA
  • Soybean oil
  • In vitro
  • In vivo