Skip to main content

Advertisement

Log in

The Effects of Additives on the Biodegradation of Polycaprolactone Composites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Because environmental pollution caused by plastic waste is a major problem investigations concerning biodegradable packaging are important and required. In this study, the biodegradation of PCL composite films with organic (glycerol monooleate and oleic acid) and inorganic additives (organo nano clay) was investigated to understand which additive and the amount of additive was more effective for biodegradation. The relationship between the degree of crystallinity and the effect of additives on the biodegradability of polycaprolactone (PCL) was examined. PCL composite films were prepared using organo nano clay (0.1–0.4–1–3 wt%) and oleic acid (1–3–5 wt%) or GMO (1–3–5 wt%). The 35 films prepared with PCL (P), clay (C), oleic acid (O), or glycerol monooleate (G) are coded as P_C#wt%_O (or G)#wt%. The composite films, P_C0.4_O5 contains 0.4 wt% clay and 5 wt% oleic acid and the P_C3_G1 contains 3 wt% clay and 1 wt% glycerol monooleate. The biodegradation of PCL films in simulated soil was studied for 36 months. The films were periodically removed from the simulated soil and film thicknesses, weight losses, visual changes, crystal structures, and a functional group analyses were performed. PCL composite films are separated into three groups, depending on degradation time, (1) films that degraded before 8 months (fast degradation), (2) films that degraded around 24 months (similar to neat PCL), and (3) films that take longer to degrade (slow degradation). The films in the first group are PCL films with 1 and 3 wt% clay additive and they begin to biodegrade at the 5th month. However, a composite film of PCL with only 0.4 wt% clay and 5 wt% GMO addition has the shortest degradation time and degraded in 5 months. The films in the last group are; P_G3, P_G5, P_C0.1, P_C0.1_O1, and P_C0.1_O5 and they took around 30 months for biodegradation. It was observed that increasing the organo nanoclay additive increases the biodegradability by disrupting the crystal structure and causing a defective crystal formation. The addition of GMO with organo nano clay also accelerates biodegradation. The addition of organo nano clay in an amount as small as 0.1 wt% acts as the nucleating agent, increases the degree of crystallinity of the PCL composites, and slows the biodegradation period by increasing the time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Kenneth M, Betty B (2007) Inst Food Technol 72 39–55

    Google Scholar 

  2. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biotechnol Adv 26:246–265

    Article  CAS  Google Scholar 

  3. Benitez J, Sanchez, Arnal MR, Müller AJ, Rodriguez O, Morales G (2012) Polym Degrad Stab 98(2):490–501

    Article  Google Scholar 

  4. Calmon A, Dusserre-Bresson L, Bellon-Maurel V, Feuilloley P, Silvestre F (2000) Chemosphere 41(5):645–651

    Article  CAS  Google Scholar 

  5. Sudhakar M, Doble M, Murthy PS, Venkatesan R (2008) Int Biodeterior Biodegrad 61:203–213

    Article  CAS  Google Scholar 

  6. Kamaruddin R, Yusuf MM (2012) Procedia 42:205–211

    Google Scholar 

  7. Lucas N, Bienaime B, Belloy C, Queneudec M, Silvestre F, Saucedo JEN (2008) Chemosphere 73:429–442

    Article  CAS  Google Scholar 

  8. Husarova L, Machovsky M, Gerych P, Houser J, Koutny M (2010) Polym Degrad Stab 95:1794–1799

    Article  CAS  Google Scholar 

  9. Rhim JW, Ng PKW (2007) Crit Rev Food Sci Nutr 47:411–433

    Article  CAS  Google Scholar 

  10. Pandey JK, Reddy KR, Kumar AP, Singh RP (2005) Polym Degrad Stab 88:234–250

    Article  CAS  Google Scholar 

  11. Jitendra KP, Reddy KR, Kumar AP, Singh RP (2005) Polym Degrad Stab 88:234–250

    Article  Google Scholar 

  12. Kale G, Auras R, Singh SP (2006) J Polym Environ 14:317–334

    Article  CAS  Google Scholar 

  13. Eggins HOW, Oxley TA (2001) Int Biodeter Biodegr 48:12–15

    Article  CAS  Google Scholar 

  14. Leja K, Lewandowicz G (2010) Pol J Environ Stud 19(2):255–266

    Google Scholar 

  15. Cesur S, Balköse D, Alp FB, Küçükgöksel Y, Kahraman T, Akın O (2012) Modelling of crystallization kinetics of PCL composites with organic and inorganic additives and investigation of the affecting parameters on desired product properties. TÜBİTAK project, 110M157, İzmir

  16. Contat-Rodrigo L, Ribes-Greus A, Imrie CT (2001) J Appl Polym Sci 86:764–772

    Article  Google Scholar 

  17. Guo W, Tao J, Yang C, Song C, Geng W, Li Q, Wang Y, Kong M, Wang S (2012) PLoS ONE 7(5). doi:10.1371/journal.pone.0038341

  18. Accinelli ML, Sacca, M. Mencarelli, Vicari A (2012) Chemosphere 89:136–143

    Article  CAS  Google Scholar 

  19. Acierno S, Maio E, Iannace S, Grizzuti N (2005) Rheologica Acta 45:387–392

    Article  Google Scholar 

  20. Avella M, Bondioli F, Cannillo V, Pace E, Errico M, Ferrari A (2006) Compos Sci Technol 66:886–894

    Article  CAS  Google Scholar 

  21. Elzein T, Nasser-Eddine M, Delaite C, Bistac S, Dumas P (2004) J Colloid Interface Sci 273:381–387

    Article  CAS  Google Scholar 

  22. Fukushima K, Abbate C, Tabuani D, Gennari M, Rizzarelli P, Camino G (2010) Mater Sci Eng C 30:566–574

    Article  CAS  Google Scholar 

  23. Luduena L, Alvarez V, Vazquez A (2007) Mater Sci Eng A 460–461:121–129

    Article  Google Scholar 

  24. Luduena LN, Vazquez A, Alvarez VA (2008) J Appl Polym Sci 109:3148–3156

    Article  CAS  Google Scholar 

  25. She H, Xiao X, Liu R (2007) J Mater Sci 42:8113–8119

    Article  CAS  Google Scholar 

  26. Skoglund P, Fransson A (1996) J Appl Polym Sci 61:2455–2465

    Article  CAS  Google Scholar 

  27. Wang XL, Huang FY, Zhou Y, Wang YZ (2009) J Macromol Sci B 48:710–722

    Article  CAS  Google Scholar 

  28. Wong SC, Baji A (2007) J Mater Sci 19:929–936

    Google Scholar 

  29. Woodruff MA, Hutmacher DW (2010) Prog Polym Sci 35:1217–1256

    Article  CAS  Google Scholar 

  30. Yingwei D, Salvatore I, Nicholas L (2005) Macromolecules 228:115–124

    Google Scholar 

  31. Alp B, Cesur S (2013) J Appl Polym Sci 130(2):1259–1275

    Article  CAS  Google Scholar 

  32. Labidi S, Azema N, Perrin D, Lopez-Cuesta JM (2010) Polym Degrad Stab 95:382–388

    Article  CAS  Google Scholar 

  33. Peng H, Ling J, Liu J, Zhu N, Ni X, Shen Z (2010) Polym Degrad Stab 95:643–650

    Article  CAS  Google Scholar 

  34. Peng Q, Kang F, Li J, Yang X (2010) Chin Sci Bull 55:3279–3282

    Article  CAS  Google Scholar 

  35. Sekosan G, Vasanthan N (2010) J Polym Sci B 48:202–211

    Article  CAS  Google Scholar 

  36. Wu T, Xie T, Yang G (2009) Appl Clay Sci 45:105–110

    Article  CAS  Google Scholar 

  37. Lam XF, Savalani MM, Teoh SH, Hutmacher DW (2008) Biomed Mater 3(3):034108

    Article  Google Scholar 

  38. Sivalingam G, Vijayalakshmi SP, Madras G (2004) Ind Eng Chem Res 43:7702–7709

    Article  CAS  Google Scholar 

  39. Sivalingam G, Karthik R, Madras G (2003) J Anal Appl Pyrolysis 70:631–647

    Article  CAS  Google Scholar 

  40. Seretoudi G, Bikiaris D, Panayiotou C (2002) Polymer 43:5405–5415

    Article  CAS  Google Scholar 

  41. Lefevre C, Tidjani A, Vander Wauven C, David C (2002) J Appl Polym Sci 83:1334–1340

    Article  CAS  Google Scholar 

  42. Darwis D, Mitomoa H, Yoshii F (1999) Polym Degrad Stab 65:279–285

    Article  CAS  Google Scholar 

  43. Tjong SC, Xu Y, Meng YZ (1999) Polymer 40:3703–3710

    Article  CAS  Google Scholar 

  44. Mochizuki M, Hayashi T (1999) Pure Appl Chem 71:2177–2188

    Article  CAS  Google Scholar 

  45. Hong SO, Rhim JW (2012) LWT—Food Sci Technol 48:43–51

    CAS  Google Scholar 

  46. Paiva LB, Morales AR, Díaz FR (2008) Appl Clay Sci 42:8–24

    Article  Google Scholar 

  47. Reddy MM, Gupta KR, Bhattacharya SN, Parthasarathy RJ (2008) J Polym Environ 16(1):27–34

    Article  CAS  Google Scholar 

  48. Kahraman T(2013) Crystallization kinetics of polycaprolactone (PCL)-clay composite films with oleic acid/and glycerol monooleate additives and product properties, Master of Science Thesis, Ege University, Chemical Engineering Department, İzmir, Turkey

  49. Cesur S, Aysan AB, Küçükgöksel Y (2014) Plastik & Ambalaj Teknolojisi 19(197):45–56. ISSN:13027034

    Google Scholar 

  50. Rosa S, Guedes CGF, Casarin F (2005) Polym Bull 54:321–333

    Article  CAS  Google Scholar 

  51. Di Maio E, Iannace S, Sorrentino L, Nicolais L (2004) Polymer 45:8893–8900

    Article  Google Scholar 

  52. Lepoittevin B, Devalckenaere M, Pantoustier N, Alexandre M (2002) Polymer 43:4017–4023

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Ege University, Scientific Research Project Fund, project BAP 11-MÜH-041. The total biodegradation time period of the polymeric composite films was for 3 years and several of my graduate and undergraduate students contributed to the experimental part of this research and I am grateful to them all: Burcu Alp, Tansel Kahraman, Yelda Küçükgöksel, Ayşe Beyza Aysan, Cansu Köroğlu, Ecem Yıldırım, Ece Ulaştırıcı, Ecem Pınar Kaya, and Ceren Selen Apa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serap Cesur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cesur, S. The Effects of Additives on the Biodegradation of Polycaprolactone Composites. J Polym Environ 26, 1425–1444 (2018). https://doi.org/10.1007/s10924-017-1029-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1029-y

Keywords