Abstract
Cellulose micro/nanofibrils were successfully extracted from softwood Douglas fir in three distinct stages. Initially raw Douglas fir wood chips were subjected to a hot water extraction (HWE) treatment. Then HWE treated cellulosic fibers underwent a bleaching process followed by a mild ultrasonication. Chemical composition analysis according to ASTM standards confirmed that most of hemicelluloses and nearly all lignin were removed during the first two stages, respectively. Microscopy studies showed formation of nanofibrils during the ultrasonication process, and increasing ultrasonication time led to generation of greater percentage of nanofibrils. With the removal of the matrix materials, the crystallinity of the cellulosic fibers was increased, whereas thermal stability was maintained. HWE opened up the cell wall structure, thereby facilitating the subsequent fractionation into micro/nanofibrils. The obtained cellulose micro/nanofibrils could serve as reinforcing material in composite products or raw material for other applications, such as filtration membrane.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/C0CS00108B
Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626. doi:10.1021/bm0493685
Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479
Fahlén J, Salmen L (2003) Cross-sectional structure of the secondary wall of wood fibers as affected by processing. J Mater Sci 38:119–126. doi:10.1023/A:1021174118468
Xu X, Liu F, Jiang L et al (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009. doi:10.1021/am302624t
Chaker A, Mutje P, Vilaseca F, Boufi S (2013) Reinforcing potential of nanofibrillated cellulose from nonwoody plants. Polym Compos 34:1999–2007. doi:10.1002/pc.22607
Nishino T, Ikuyo Matsuda A, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687. doi:10.1021/ma049300h
Jiang F, Hsieh Y-L (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40. doi:10.1016/j.carbpol.2013.02.022
Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107. doi:10.1515/HF.2005.016
Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278. doi:10.1021/bm700624p
Zhao J, Zhang W, Zhang X et al (2013) Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization. Carbohydr Polym 97:695–702. doi:10.1016/j.carbpol.2013.05.050
Pääkkö M, Ankerfors M, Kosonen H et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941. doi:10.1021/bm061215p
Chen W, Yu H, Liu Y et al (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811. doi:10.1016/j.carbpol.2010.10.040
Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, part 1: process optimization. J Appl Polym Sci 113:1270–1275. doi:10.1002/app.30072
Karimi S, Tahir PM, Karimi A, Dufresne A (2014) Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano. Carbohydr Polym 101:878–885. doi:10.1016/j.carbpol.2013.09.106
Li W, Yue J, Liu S (2012) Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites. Ultrason Sonochem 19:479–485. doi:10.1016/j.ultsonch.2011.11.007
Zhao H-P, Feng X-Q, Gao H (2007) Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett 90:073112. doi:10.1063/1.2450666
Tang SY, Shridharan P, Sivakumar M (2013) Impact of process parameters in the generation of novel aspirin nanoemulsions—comparative studies between ultrasound cavitation and microfluidizer. Ultrason Sonochem 20:485–497. doi:10.1016/j.ultsonch.2012.04.005
Amidon TE, Wood CD, Shupe AM (2008) Biorefinery: conversion of woody biomass to chemicals, energy and materials. J Biobased Mater Bioenergy 2:100–120. doi:10.1166/jbmb.2008.302
Pelaez-Samaniego MR, Yadama V, Lowell E et al (2013) Hot water extracted wood fiber for production of wood plastic composites (WPCs). Holzforschung 67:193–200. doi:10.1515/hf-2012-0071
Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026. doi:10.1021/bm701157n
Kumar R, Hu F, Hubbell CA et al (2013) Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass. Bioresour Technol 130:372–381. doi:10.1016/j.biortech.2012.12.028
Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. doi:10.1177/004051755902901003
Xu F, Yu J, Tesso T et al (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energy 104:801–809. doi:10.1016/j.apenergy.2012.12.019
Abraham E, Deepa B, Pothen LA et al (2013) Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydr Polym 92:1477–1483. doi:10.1016/j.carbpol.2012.10.056
Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol. doi:10.1016/j.compscitech.2007.05.044
Edwards HGM, Farwell DW, Webster D (1997) FT Raman microscopy of untreated natural plant fibres. Spectrochim Acta Part A 53:2383–2392. doi:10.1016/S1386-1425(97)00178-9
Chen W, Yu H, Liu Y (2011) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86:453–461
C S JC, George N, Narayanankutty SK (2016) Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr Polym 142:158–166. doi:10.1016/j.carbpol.2016.01.015
Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37:93–99
Thompson DN, Campbell T, Bals B et al (2013) Chemical preconversion: application of low-severity pretreatment chemistries for commoditization of lignocellulosic feedstock. Biofuels 4:323–340. doi:10.4155/bfs.13.15
Cravotto G, Cintas P (2007) Forcing and controlling chemical reactions with ultrasound. Angew Chem Int Ed 46:5476–5478. doi:10.1002/anie.200701567
Chen P, Yu H, Liu Y et al (2012) Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellulose 20:149–157. doi:10.1007/s10570-012-9829-7
Zierdt P, Theumer T, Kulkarni G et al (2015) Sustainable wood-plastic composites from bio-based polyamide 11 and chemically modified beech fibers. Sustain Mater Technol 6:6–14. doi:10.1016/j.susmat.2015.10.001
Liu D, Chen X, Yue Y et al (2011) Structure and rheology of nanocrystalline cellulose. Carbohydr Polym 84:316–322. doi:10.1016/j.carbpol.2010.11.050
Kasaliwal GR, Göldel A, Pötschke P, Heinrich G (2011) Influences of polymer matrix melt viscosity and molecular weight on MWCNT agglomerate dispersion. Polymer 52:1027–1036. doi:10.1016/j.polymer.2011.01.007
Chen J-H, Wang K, Xu F, Sun R-C (2014) Effect of hemicellulose removal on the structural and mechanical properties of regenerated fibers from bamboo. Cellulose 22:63–72. doi:10.1007/s10570-014-0488-8
de Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787. doi:10.1002/marc.200300268
French AD (2013) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. doi:10.1007/s10570-013-0030-4
Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: Effect of the carboxyl content. Carbohydr Polym 84:975–983. doi:10.1016/j.carbpol.2010.12.052
Cabrales L, Abidi N (2010) On the thermal degradation of cellulose in cotton fibers. J Therm Anal Calorim 102:485–491. doi:10.1007/s10973-010-0911-9
Lee HL, Chen GC, Rowell RM (2004) Thermal properties of wood reacted with a phosphorus pentoxide–amine system. J Appl Polym Sci 91:2465–2481. doi:10.1002/app.13408
Yang H, Yan R, Chen H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. doi:10.1016/j.fuel.2006.12.013
Mitra BC, Basak RK, Sarkar M (1998) Studies on jute-reinforced composites, its limitations, and some solutions through chemical modifications of fibers. J Appl Polym Sci 67:1093–1100. doi:10.1002/(SICI)1097-4628(19980207)67:6<1093::AID-APP17>3.0.CO;2-1
Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493. doi:10.1016/j.polymer.2007.03.062
Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2:1–8
Funding
This study, as part of the Northwest Advanced Renewables Alliance (NARA), was funded by the Agriculture and Food Research Initiative Competitive (Grant No. 2011-68005-30416) from the United States Department of Agriculture (USDA) National Institute of Food and Agriculture.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Zhu, R., Yadama, V. Isolation and Characterization of Cellulose Micro/Nanofibrils from Douglas Fir. J Polym Environ 26, 1012–1023 (2018). https://doi.org/10.1007/s10924-017-1013-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10924-017-1013-6