Skip to main content
Log in

Isolation and Characterization of Cellulose Micro/Nanofibrils from Douglas Fir

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Cellulose micro/nanofibrils were successfully extracted from softwood Douglas fir in three distinct stages. Initially raw Douglas fir wood chips were subjected to a hot water extraction (HWE) treatment. Then HWE treated cellulosic fibers underwent a bleaching process followed by a mild ultrasonication. Chemical composition analysis according to ASTM standards confirmed that most of hemicelluloses and nearly all lignin were removed during the first two stages, respectively. Microscopy studies showed formation of nanofibrils during the ultrasonication process, and increasing ultrasonication time led to generation of greater percentage of nanofibrils. With the removal of the matrix materials, the crystallinity of the cellulosic fibers was increased, whereas thermal stability was maintained. HWE opened up the cell wall structure, thereby facilitating the subsequent fractionation into micro/nanofibrils. The obtained cellulose micro/nanofibrils could serve as reinforcing material in composite products or raw material for other applications, such as filtration membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/C0CS00108B

    Article  CAS  Google Scholar 

  2. Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626. doi:10.1021/bm0493685

    Article  Google Scholar 

  3. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479

    Article  CAS  Google Scholar 

  4. Fahlén J, Salmen L (2003) Cross-sectional structure of the secondary wall of wood fibers as affected by processing. J Mater Sci 38:119–126. doi:10.1023/A:1021174118468

    Article  Google Scholar 

  5. Xu X, Liu F, Jiang L et al (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009. doi:10.1021/am302624t

    Article  CAS  Google Scholar 

  6. Chaker A, Mutje P, Vilaseca F, Boufi S (2013) Reinforcing potential of nanofibrillated cellulose from nonwoody plants. Polym Compos 34:1999–2007. doi:10.1002/pc.22607

    Article  CAS  Google Scholar 

  7. Nishino T, Ikuyo Matsuda A, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687. doi:10.1021/ma049300h

    Article  CAS  Google Scholar 

  8. Jiang F, Hsieh Y-L (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40. doi:10.1016/j.carbpol.2013.02.022

    Article  CAS  Google Scholar 

  9. Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107. doi:10.1515/HF.2005.016

    Article  CAS  Google Scholar 

  10. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278. doi:10.1021/bm700624p

    Article  CAS  Google Scholar 

  11. Zhao J, Zhang W, Zhang X et al (2013) Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization. Carbohydr Polym 97:695–702. doi:10.1016/j.carbpol.2013.05.050

    Article  CAS  Google Scholar 

  12. Pääkkö M, Ankerfors M, Kosonen H et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941. doi:10.1021/bm061215p

    Article  Google Scholar 

  13. Chen W, Yu H, Liu Y et al (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811. doi:10.1016/j.carbpol.2010.10.040

    Article  CAS  Google Scholar 

  14. Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, part 1: process optimization. J Appl Polym Sci 113:1270–1275. doi:10.1002/app.30072

    Article  CAS  Google Scholar 

  15. Karimi S, Tahir PM, Karimi A, Dufresne A (2014) Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano. Carbohydr Polym 101:878–885. doi:10.1016/j.carbpol.2013.09.106

    Article  CAS  Google Scholar 

  16. Li W, Yue J, Liu S (2012) Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites. Ultrason Sonochem 19:479–485. doi:10.1016/j.ultsonch.2011.11.007

    Article  CAS  Google Scholar 

  17. Zhao H-P, Feng X-Q, Gao H (2007) Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett 90:073112. doi:10.1063/1.2450666

    Article  Google Scholar 

  18. Tang SY, Shridharan P, Sivakumar M (2013) Impact of process parameters in the generation of novel aspirin nanoemulsions—comparative studies between ultrasound cavitation and microfluidizer. Ultrason Sonochem 20:485–497. doi:10.1016/j.ultsonch.2012.04.005

    Article  CAS  Google Scholar 

  19. Amidon TE, Wood CD, Shupe AM (2008) Biorefinery: conversion of woody biomass to chemicals, energy and materials. J Biobased Mater Bioenergy 2:100–120. doi:10.1166/jbmb.2008.302

    Article  Google Scholar 

  20. Pelaez-Samaniego MR, Yadama V, Lowell E et al (2013) Hot water extracted wood fiber for production of wood plastic composites (WPCs). Holzforschung 67:193–200. doi:10.1515/hf-2012-0071

    Article  CAS  Google Scholar 

  21. Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026. doi:10.1021/bm701157n

    Article  CAS  Google Scholar 

  22. Kumar R, Hu F, Hubbell CA et al (2013) Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass. Bioresour Technol 130:372–381. doi:10.1016/j.biortech.2012.12.028

    Article  CAS  Google Scholar 

  23. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. doi:10.1177/004051755902901003

    Article  CAS  Google Scholar 

  24. Xu F, Yu J, Tesso T et al (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energy 104:801–809. doi:10.1016/j.apenergy.2012.12.019

    Article  CAS  Google Scholar 

  25. Abraham E, Deepa B, Pothen LA et al (2013) Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydr Polym 92:1477–1483. doi:10.1016/j.carbpol.2012.10.056

    Article  CAS  Google Scholar 

  26. Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol. doi:10.1016/j.compscitech.2007.05.044

    Google Scholar 

  27. Edwards HGM, Farwell DW, Webster D (1997) FT Raman microscopy of untreated natural plant fibres. Spectrochim Acta Part A 53:2383–2392. doi:10.1016/S1386-1425(97)00178-9

    Article  Google Scholar 

  28. Chen W, Yu H, Liu Y (2011) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86:453–461

    Article  CAS  Google Scholar 

  29. C S JC, George N, Narayanankutty SK (2016) Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr Polym 142:158–166. doi:10.1016/j.carbpol.2016.01.015

    Article  Google Scholar 

  30. Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37:93–99

    Article  CAS  Google Scholar 

  31. Thompson DN, Campbell T, Bals B et al (2013) Chemical preconversion: application of low-severity pretreatment chemistries for commoditization of lignocellulosic feedstock. Biofuels 4:323–340. doi:10.4155/bfs.13.15

    Article  CAS  Google Scholar 

  32. Cravotto G, Cintas P (2007) Forcing and controlling chemical reactions with ultrasound. Angew Chem Int Ed 46:5476–5478. doi:10.1002/anie.200701567

    Article  CAS  Google Scholar 

  33. Chen P, Yu H, Liu Y et al (2012) Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellulose 20:149–157. doi:10.1007/s10570-012-9829-7

    Article  CAS  Google Scholar 

  34. Zierdt P, Theumer T, Kulkarni G et al (2015) Sustainable wood-plastic composites from bio-based polyamide 11 and chemically modified beech fibers. Sustain Mater Technol 6:6–14. doi:10.1016/j.susmat.2015.10.001

    CAS  Google Scholar 

  35. Liu D, Chen X, Yue Y et al (2011) Structure and rheology of nanocrystalline cellulose. Carbohydr Polym 84:316–322. doi:10.1016/j.carbpol.2010.11.050

    Article  CAS  Google Scholar 

  36. Kasaliwal GR, Göldel A, Pötschke P, Heinrich G (2011) Influences of polymer matrix melt viscosity and molecular weight on MWCNT agglomerate dispersion. Polymer 52:1027–1036. doi:10.1016/j.polymer.2011.01.007

    Article  CAS  Google Scholar 

  37. Chen J-H, Wang K, Xu F, Sun R-C (2014) Effect of hemicellulose removal on the structural and mechanical properties of regenerated fibers from bamboo. Cellulose 22:63–72. doi:10.1007/s10570-014-0488-8

    Article  Google Scholar 

  38. de Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787. doi:10.1002/marc.200300268

    Article  Google Scholar 

  39. French AD (2013) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. doi:10.1007/s10570-013-0030-4

    Article  Google Scholar 

  40. Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: Effect of the carboxyl content. Carbohydr Polym 84:975–983. doi:10.1016/j.carbpol.2010.12.052

    Article  CAS  Google Scholar 

  41. Cabrales L, Abidi N (2010) On the thermal degradation of cellulose in cotton fibers. J Therm Anal Calorim 102:485–491. doi:10.1007/s10973-010-0911-9

    Article  CAS  Google Scholar 

  42. Lee HL, Chen GC, Rowell RM (2004) Thermal properties of wood reacted with a phosphorus pentoxide–amine system. J Appl Polym Sci 91:2465–2481. doi:10.1002/app.13408

    Article  CAS  Google Scholar 

  43. Yang H, Yan R, Chen H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. doi:10.1016/j.fuel.2006.12.013

    Article  CAS  Google Scholar 

  44. Mitra BC, Basak RK, Sarkar M (1998) Studies on jute-reinforced composites, its limitations, and some solutions through chemical modifications of fibers. J Appl Polym Sci 67:1093–1100. doi:10.1002/(SICI)1097-4628(19980207)67:6<1093::AID-APP17>3.0.CO;2-1

    Article  CAS  Google Scholar 

  45. Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493. doi:10.1016/j.polymer.2007.03.062

    Article  CAS  Google Scholar 

  46. Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2:1–8

    Google Scholar 

Download references

Funding

This study, as part of the Northwest Advanced Renewables Alliance (NARA), was funded by the Agriculture and Food Research Initiative Competitive (Grant No. 2011-68005-30416) from the United States Department of Agriculture (USDA) National Institute of Food and Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, R., Yadama, V. Isolation and Characterization of Cellulose Micro/Nanofibrils from Douglas Fir. J Polym Environ 26, 1012–1023 (2018). https://doi.org/10.1007/s10924-017-1013-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1013-6

Keywords

Navigation