Advertisement

Journal of Polymers and the Environment

, Volume 26, Issue 3, pp 1012–1023 | Cite as

Isolation and Characterization of Cellulose Micro/Nanofibrils from Douglas Fir

  • Rui Zhu
  • Vikram Yadama
Original Paper
  • 179 Downloads

Abstract

Cellulose micro/nanofibrils were successfully extracted from softwood Douglas fir in three distinct stages. Initially raw Douglas fir wood chips were subjected to a hot water extraction (HWE) treatment. Then HWE treated cellulosic fibers underwent a bleaching process followed by a mild ultrasonication. Chemical composition analysis according to ASTM standards confirmed that most of hemicelluloses and nearly all lignin were removed during the first two stages, respectively. Microscopy studies showed formation of nanofibrils during the ultrasonication process, and increasing ultrasonication time led to generation of greater percentage of nanofibrils. With the removal of the matrix materials, the crystallinity of the cellulosic fibers was increased, whereas thermal stability was maintained. HWE opened up the cell wall structure, thereby facilitating the subsequent fractionation into micro/nanofibrils. The obtained cellulose micro/nanofibrils could serve as reinforcing material in composite products or raw material for other applications, such as filtration membrane.

Keywords

Hot water extraction Ultrasonication Cellulose micro/nanofibrils Douglas fir 

Notes

Funding

This study, as part of the Northwest Advanced Renewables Alliance (NARA), was funded by the Agriculture and Food Research Initiative Competitive (Grant No. 2011-68005-30416) from the United States Department of Agriculture (USDA) National Institute of Food and Agriculture.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi: 10.1039/C0CS00108B CrossRefGoogle Scholar
  2. 2.
    Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626. doi: 10.1021/bm0493685 CrossRefGoogle Scholar
  3. 3.
    Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479CrossRefGoogle Scholar
  4. 4.
    Fahlén J, Salmen L (2003) Cross-sectional structure of the secondary wall of wood fibers as affected by processing. J Mater Sci 38:119–126. doi: 10.1023/A:1021174118468 CrossRefGoogle Scholar
  5. 5.
    Xu X, Liu F, Jiang L et al (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009. doi: 10.1021/am302624t CrossRefGoogle Scholar
  6. 6.
    Chaker A, Mutje P, Vilaseca F, Boufi S (2013) Reinforcing potential of nanofibrillated cellulose from nonwoody plants. Polym Compos 34:1999–2007. doi: 10.1002/pc.22607 CrossRefGoogle Scholar
  7. 7.
    Nishino T, Ikuyo Matsuda A, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687. doi: 10.1021/ma049300h CrossRefGoogle Scholar
  8. 8.
    Jiang F, Hsieh Y-L (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40. doi: 10.1016/j.carbpol.2013.02.022 CrossRefGoogle Scholar
  9. 9.
    Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107. doi: 10.1515/HF.2005.016 CrossRefGoogle Scholar
  10. 10.
    Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278. doi: 10.1021/bm700624p CrossRefGoogle Scholar
  11. 11.
    Zhao J, Zhang W, Zhang X et al (2013) Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization. Carbohydr Polym 97:695–702. doi: 10.1016/j.carbpol.2013.05.050 CrossRefGoogle Scholar
  12. 12.
    Pääkkö M, Ankerfors M, Kosonen H et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941. doi: 10.1021/bm061215p CrossRefGoogle Scholar
  13. 13.
    Chen W, Yu H, Liu Y et al (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811. doi: 10.1016/j.carbpol.2010.10.040 CrossRefGoogle Scholar
  14. 14.
    Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, part 1: process optimization. J Appl Polym Sci 113:1270–1275. doi: 10.1002/app.30072 CrossRefGoogle Scholar
  15. 15.
    Karimi S, Tahir PM, Karimi A, Dufresne A (2014) Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano. Carbohydr Polym 101:878–885. doi: 10.1016/j.carbpol.2013.09.106 CrossRefGoogle Scholar
  16. 16.
    Li W, Yue J, Liu S (2012) Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites. Ultrason Sonochem 19:479–485. doi: 10.1016/j.ultsonch.2011.11.007 CrossRefGoogle Scholar
  17. 17.
    Zhao H-P, Feng X-Q, Gao H (2007) Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett 90:073112. doi: 10.1063/1.2450666 CrossRefGoogle Scholar
  18. 18.
    Tang SY, Shridharan P, Sivakumar M (2013) Impact of process parameters in the generation of novel aspirin nanoemulsions—comparative studies between ultrasound cavitation and microfluidizer. Ultrason Sonochem 20:485–497. doi: 10.1016/j.ultsonch.2012.04.005 CrossRefGoogle Scholar
  19. 19.
    Amidon TE, Wood CD, Shupe AM (2008) Biorefinery: conversion of woody biomass to chemicals, energy and materials. J Biobased Mater Bioenergy 2:100–120. doi: 10.1166/jbmb.2008.302 CrossRefGoogle Scholar
  20. 20.
    Pelaez-Samaniego MR, Yadama V, Lowell E et al (2013) Hot water extracted wood fiber for production of wood plastic composites (WPCs). Holzforschung 67:193–200. doi: 10.1515/hf-2012-0071 CrossRefGoogle Scholar
  21. 21.
    Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026. doi: 10.1021/bm701157n CrossRefGoogle Scholar
  22. 22.
    Kumar R, Hu F, Hubbell CA et al (2013) Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass. Bioresour Technol 130:372–381. doi: 10.1016/j.biortech.2012.12.028 CrossRefGoogle Scholar
  23. 23.
    Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. doi: 10.1177/004051755902901003 CrossRefGoogle Scholar
  24. 24.
    Xu F, Yu J, Tesso T et al (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energy 104:801–809. doi: 10.1016/j.apenergy.2012.12.019 CrossRefGoogle Scholar
  25. 25.
    Abraham E, Deepa B, Pothen LA et al (2013) Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydr Polym 92:1477–1483. doi: 10.1016/j.carbpol.2012.10.056 CrossRefGoogle Scholar
  26. 26.
    Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol. doi: 10.1016/j.compscitech.2007.05.044 Google Scholar
  27. 27.
    Edwards HGM, Farwell DW, Webster D (1997) FT Raman microscopy of untreated natural plant fibres. Spectrochim Acta Part A 53:2383–2392. doi: 10.1016/S1386-1425(97)00178-9 CrossRefGoogle Scholar
  28. 28.
    Chen W, Yu H, Liu Y (2011) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86:453–461CrossRefGoogle Scholar
  29. 29.
    C S JC, George N, Narayanankutty SK (2016) Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr Polym 142:158–166. doi: 10.1016/j.carbpol.2016.01.015 CrossRefGoogle Scholar
  30. 30.
    Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37:93–99CrossRefGoogle Scholar
  31. 31.
    Thompson DN, Campbell T, Bals B et al (2013) Chemical preconversion: application of low-severity pretreatment chemistries for commoditization of lignocellulosic feedstock. Biofuels 4:323–340. doi: 10.4155/bfs.13.15 CrossRefGoogle Scholar
  32. 32.
    Cravotto G, Cintas P (2007) Forcing and controlling chemical reactions with ultrasound. Angew Chem Int Ed 46:5476–5478. doi: 10.1002/anie.200701567 CrossRefGoogle Scholar
  33. 33.
    Chen P, Yu H, Liu Y et al (2012) Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellulose 20:149–157. doi: 10.1007/s10570-012-9829-7 CrossRefGoogle Scholar
  34. 34.
    Zierdt P, Theumer T, Kulkarni G et al (2015) Sustainable wood-plastic composites from bio-based polyamide 11 and chemically modified beech fibers. Sustain Mater Technol 6:6–14. doi: 10.1016/j.susmat.2015.10.001 Google Scholar
  35. 35.
    Liu D, Chen X, Yue Y et al (2011) Structure and rheology of nanocrystalline cellulose. Carbohydr Polym 84:316–322. doi: 10.1016/j.carbpol.2010.11.050 CrossRefGoogle Scholar
  36. 36.
    Kasaliwal GR, Göldel A, Pötschke P, Heinrich G (2011) Influences of polymer matrix melt viscosity and molecular weight on MWCNT agglomerate dispersion. Polymer 52:1027–1036. doi: 10.1016/j.polymer.2011.01.007 CrossRefGoogle Scholar
  37. 37.
    Chen J-H, Wang K, Xu F, Sun R-C (2014) Effect of hemicellulose removal on the structural and mechanical properties of regenerated fibers from bamboo. Cellulose 22:63–72. doi: 10.1007/s10570-014-0488-8 CrossRefGoogle Scholar
  38. 38.
    de Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787. doi: 10.1002/marc.200300268 CrossRefGoogle Scholar
  39. 39.
    French AD (2013) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. doi: 10.1007/s10570-013-0030-4 CrossRefGoogle Scholar
  40. 40.
    Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: Effect of the carboxyl content. Carbohydr Polym 84:975–983. doi: 10.1016/j.carbpol.2010.12.052 CrossRefGoogle Scholar
  41. 41.
    Cabrales L, Abidi N (2010) On the thermal degradation of cellulose in cotton fibers. J Therm Anal Calorim 102:485–491. doi: 10.1007/s10973-010-0911-9 CrossRefGoogle Scholar
  42. 42.
    Lee HL, Chen GC, Rowell RM (2004) Thermal properties of wood reacted with a phosphorus pentoxide–amine system. J Appl Polym Sci 91:2465–2481. doi: 10.1002/app.13408 CrossRefGoogle Scholar
  43. 43.
    Yang H, Yan R, Chen H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. doi: 10.1016/j.fuel.2006.12.013 CrossRefGoogle Scholar
  44. 44.
    Mitra BC, Basak RK, Sarkar M (1998) Studies on jute-reinforced composites, its limitations, and some solutions through chemical modifications of fibers. J Appl Polym Sci 67:1093–1100. doi: 10.1002/(SICI)1097-4628(19980207)67:6<1093::AID-APP17>3.0.CO;2-1 CrossRefGoogle Scholar
  45. 45.
    Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493. doi: 10.1016/j.polymer.2007.03.062 CrossRefGoogle Scholar
  46. 46.
    Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2:1–8Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Xinxiu New Materials Co., Ltd.Santa ClaraUSA
  2. 2.Composite Materials and Engineering CenterWashington State UniversityPullmanUSA
  3. 3.Department of Civil and Environmental EngineeringWashington State UniversityPullmanUSA

Personalised recommendations