Skip to main content
Log in

Plasticization of Biodegradable Poly(Lactic Acid) by Different Triglyceride Molecular Sizes: A Comparative Study with Glycerol

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this paper, poly(lactic acid) (PLA) was toughened and softened by four different molecular size plasticizers namely; glycerol, tributyrin, trilaurin and tristearin. Among four plasticizers studied, tributyrin seems the most appropriate plasticizer for PLA due to its proper molecular size. It increased the tensile elongation at break and impact strength by around ten and three times respectively, with only 10 wt% addition. For PLA with trilaurin and tristearin, they did not show the remarkable toughness improvement. Scanning electron microscope (SEM) observation indicated some phase separations of PLA plasticized with glycerol, trilaurin and tristearin, while tributyrin showed its homogeneity to PLA matrix with higher plastic deformations. Under dynamic load, some shifts of the E′ drop and tanδ peak around 10–40 °C were observed, when glycerol and tributyrin was added. Differential scanning calorimeter (DSC) measurements showed some significant shifts of the transition temperatures, while the degree of crystallinity increased slightly. Heat distortion temperature of the blends fluctuated in a small range of 2–3 °C, which still restricted the use of PLA products above 60 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Petchwattana N, Naknaen P (2016) J Eng Sci Technol 11(10):1437–1449

    Google Scholar 

  2. Ali F, Chang YW, Kang SC, Yoon JY (2009) Polym Bull 62(1):91–98

    Article  CAS  Google Scholar 

  3. Petchwattana N, Covavisaruch S, Petthai S (2014) Polym Bull 71(8):1947–1959

    Article  CAS  Google Scholar 

  4. Qian S, Mao H, Zarei E, Sheng K (2015) J Polym Environ 23(3):341–347

    Article  CAS  Google Scholar 

  5. Ljungberg N, Wesslen B (2005) Biomacromolecules 6(3):1789–1796

    Article  CAS  Google Scholar 

  6. Jaratrotkamjorn R, Khaokong C, Tanrattanakul V (2012) J Appl Polym Sci 124(6):5027–5036

    CAS  Google Scholar 

  7. Nijenhuis AJ, Grijpma DW, Pennings AJ (1996) Polymer 37(13):2783–2791

    Article  CAS  Google Scholar 

  8. Simon CG Jr, Eidelman N, Kennedy SB, Sehgala A, Khatria CA, Washburn NR (2005) Biomaterials 26(34):6906–6915

    Article  CAS  Google Scholar 

  9. Xu YQ, Qu JP (2009) J Appl Polym Sci 112(6):3185–3191

    Article  CAS  Google Scholar 

  10. Ren Z, Dong L, Yang Y (2006) J Appl Polym Sci 101(3):1583–1590

    Article  CAS  Google Scholar 

  11. Lemmouchi Y, Murariu M, Santos AMD, Amass AJ, Schacht E, Dubois P (2009) Eur Polym J 45(10):2839–2848

    Article  CAS  Google Scholar 

  12. Ljungberg N, Colombini D, Wesslen B (2005) J Appl Polym Sci 96(4):992–1002

    Article  CAS  Google Scholar 

  13. Marcilla A, Garcia S, Garcia-Quesada JC (2004) J Anal Appl Pyrol 71(2):457–463

    Article  CAS  Google Scholar 

  14. Shin SM, Jeon HS, Kim Y, Yoshioka T, Okuwaki A (2002) Polym Degrad Stab 78(3):511–517

    Article  CAS  Google Scholar 

  15. Pereira C, Mapuskar K, Rao CV (2007) Environ Toxicol Pharmacol 23(3):319–327

    Article  CAS  Google Scholar 

  16. Pakalin S, Aschberger K, Cosgrove O, Lund B, Paya-Perez A, Vegro S (2008) Eur Union Risk Assess Rep 80(1):3–8

    Google Scholar 

  17. Ljungberg N, Andersson T, Wesslén B (2003) J Appl Polym Sci 88(14):3239–3247

    Article  CAS  Google Scholar 

  18. Yang SL, Wu ZH, Meng B, Yang W (2009) J Polym Sci Polym Phys 47(2):1136–1145

    Article  CAS  Google Scholar 

  19. Wang R, Wan C, Wang S, Zhang Y (2009) Polym Eng Sci 49(12):2414–2420

    Article  CAS  Google Scholar 

  20. Martino VP, Jimenez A, Ruseckaite RA (2009) J Appl Polym Sci 112(4):2010–2018

    Article  CAS  Google Scholar 

  21. Labrecque LV, Kumar RA, Dave V, Gross RA, Mccarthy SP (1997) J Appl Polym Sci 66(8):1507–1513

    Article  CAS  Google Scholar 

  22. Chen BK, Wu TY, Chang YM, Chen AF (2013) Chem Eng J 215–216:886–893

    Article  Google Scholar 

  23. Pandey JK, Singh RP (2005) Starch/Stärke 57(1):8–15

    Article  CAS  Google Scholar 

  24. Anker M, Stading M, Hermansson AM (2001) J Agric Food Chem 49(2):989–995

    Article  CAS  Google Scholar 

  25. Jacobsen S, Fritz HG (1999) Polym Eng Sci 39(7):1303–1310

    Article  CAS  Google Scholar 

  26. Ge H, Yang F, Hao Y, Wu G, Zhang H, Dong L (2013) J Appl Polym Sci 127(4):2832–2839

    Article  CAS  Google Scholar 

  27. Kulinski Z, Piorkowska E (2005) Polymer 46(23):10290–10300

    Article  CAS  Google Scholar 

  28. Honary S, Orafai H (2002) Drug Dev Ind Pharm 28(6):711–715

    Article  CAS  Google Scholar 

  29. Yeh JT, Huang CY, Chai WL, Chen KN (2009) J Appl Polym Sci 112(5):2757–2763

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the research grant supported by National Research Council of Thailand (contrac no. 2555/16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nawadon Petchwattana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petchwattana, N., Sanetuntikul, J. & Narupai, B. Plasticization of Biodegradable Poly(Lactic Acid) by Different Triglyceride Molecular Sizes: A Comparative Study with Glycerol. J Polym Environ 26, 1160–1168 (2018). https://doi.org/10.1007/s10924-017-1012-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1012-7

Keywords

Navigation