Skip to main content
Log in

Central Composite Design Model to Study Swelling of GrA-cl-poly(AAm) hydrogel and Kinetic Investigation of Colloidal Suspension

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In the present study, the flocculation behavior of crosslinked copolymer GrA-cl-poly(AAm) hydrogel has been studied for the removal of turbidity from waste water. Sodium borohydride has been used for the reduction of the Gum rosin acids by which it gets converted into rosin alcohols. The reduced Gum rosin alcohol was crosslinked by the use of MBA and copolymerized with acrylamide using KPS as a redox initiator. Synthesized sample was then optimized for reaction conditions like reaction time, reaction temperature and the amount of solvent, monomer concentration, initiator concentration and pH of the reaction medium in order to get maximum percentage swelling. Synthesized samples were characterized using Fourier transform infrared spectroscopy, scanning electron of microscopy and X-ray diffraction techniques. Response surface methodology (RSM) based central composite design was used to study the effect of pH of swelling medium and temperature to maximize the percentage swelling. A statistical model (ANOVA) predicted pH 7.0 and temperature 40 °C as optimum operating conditions in order to get maximu swelling. GrA-cl-poly(AAm) hydrogel was found to be pH and temperature sensitive. Kaolin has been employed as a coagulant. The flocculation efficiency of the synthesized polymer was studied as a function of polymer dose, temperature and pH of the solution. GrA-cl-poly(AAm) observed to show maximum flocculation efficiency (95%) with 70mgL−1 polymer dose in pH 5.0 at 30 °C. The adsorption capacity of malachite green dye removal (95%) was also studied with this synthesized polymer. The results validate that GrA-cl-poly(AAm) hydrogel has significant flocculation and dye removal properties and can be employed as an effective and low-cost material for removal of impurities from waste water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen Y, Liu S, Wang G (2007) A kinetic investigation of cationic starch adsorption and flocculation in kaolin suspension. Chem Eng J 133:325–333. doi:10.1016/j.cej.2007.02.019

    Article  CAS  Google Scholar 

  2. Das KK, Somasundaran P (2003) Flocculation-dispersion characteristics of alumina using a wide molecular weight range of polyacrylic acids. Colloids Surf A Physicochem Eng Asp 223:17–25. doi:10.1016/S0927-7757(03)00188-2

    Article  CAS  Google Scholar 

  3. Das KK, Somasundaran P (2004) A kinetic investigation of the flocculation of alumina with polyacrylic acid. J Colloid Interface Sci 271:102–109. doi:10.1016/j.jcis.2003.11.010

    Article  CAS  Google Scholar 

  4. Mishra A, Srinivasan R, Bajpai M, Dubey R (2004) Use of polyacrylamide-grafted Plantago psyllium mucilage as a flocculant for treatment of textile wastewater. Colloid Polym Sci 282:722–727. doi:10.1007/s00396-003-1003-1

    Article  CAS  Google Scholar 

  5. Mishra A, Bajpai M (2006) Removal of sulphate and phosphate from aqueous solutions using a food grade polysaccharide as flocculant. Colloid Polym Sci 284:443–448. doi:10.1007/s00396-005-1399-x

    Article  CAS  Google Scholar 

  6. Mishra A, Agarwal M, Bajpai M, et al (2002) Plantago psyllium mucilage for sewage and tannery effluent treatment. Iran Polym J 11:381–386.

    CAS  Google Scholar 

  7. Chung K-T, Stevens SE (1993) Degradation azo dyes by environmental microorganisms and helminths. Environ Toxicol Chem 12:2121–2132. doi:10.1002/etc.5620121120

    CAS  Google Scholar 

  8. Duran S, Solpan D, Guven O (1999) Synthesis and characterization of acrylamide-acrylic acid hydrogels and adsorption of some textile dyes. Nucl Instruments Methods Phys Res Sect B 151:196–199. doi:10.1016/S0168-583X(99)00151-2

    Article  CAS  Google Scholar 

  9. Karada E, Uzum OB, Saraydin D (2002) Swelling equilibria and dye adsorption studies of chemically crosslinked superabsorbent acrylamide / maleic acid hydrogels u m a, Dursun Saraydin. Eur Polym J 38:2133–2141. doi:10.1016/S0014-3057(02)00117-9

    Article  Google Scholar 

  10. Zheng Y, Zhu Y, Wang A (2014) Highly efficient and selective adsorption of malachite green onto granular composite hydrogel. Chem Eng J 257:66–73. doi:10.1016/j.cej.2014.07.032

    Article  CAS  Google Scholar 

  11. Srivastava S, Sinha R, Roy D (2004) Toxicological effects of malachite green. Aqua Toxicol 66:319–329. doi:10.1016/j.aquatox.2003.09.008

    Article  CAS  Google Scholar 

  12. Mittal H, Mishra SB, Mishra AK et al (2013) Flocculation characteristics and biodegradation studies of Gum ghatti based hydrogels. Int J Biol Macromol 58:37–46. doi:10.1016/j.ijbiomac.2013.03.045

    Article  CAS  Google Scholar 

  13. Mittal H, Mishra SB, Mishra AK et al (2013) Preparation of poly(acrylamide-co-acrylic acid)-grafted gum and its flocculation and biodegradation studies. Carbohydr Polym 98:397–404. doi:10.1016/j.carbpol.2013.06.026

    Article  CAS  Google Scholar 

  14. Mittal H, Jindal R, Kaith BS et al (2015) Flocculation and adsorption properties of biodegradable gum-ghatti-grafted poly(acrylamide-co-methacrylic acid) hydrogels. Carbohydr Polym 115:617–628. doi:10.1016/j.carbpol.2014.09.026

    Article  CAS  Google Scholar 

  15. Mittal H, Jindal R, Kaith BS et al (2014) Synthesis and flocculation properties of gum ghatti and poly(acrylamide-co-acrylonitrile) based biodegradable hydrogels. Carbohydr Polym 114:321–329. doi:10.1016/j.carbpol.2014.08.029

    Article  CAS  Google Scholar 

  16. Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84:76–82. doi:10.1016/j.carbpol.2010.10.061

    Article  CAS  Google Scholar 

  17. Qu X, Wirsén A, Albertsson AC (2000) Novel pH-sensitive chitosan hydrogels: Swelling behavior and states of water. Polymer 41:4589–4598. doi:10.1016/S0032-3861(99)00685-0

    Article  CAS  Google Scholar 

  18. Kaith BS, Sharma R, Kalia S, Bhatti MS (2014) Response surface methodology and optimized synthesis of guar gum-based hydrogels with enhanced swelling capacity. RSC Adv 4:40339–40344. doi:10.1039/C4RA05300A

    Article  CAS  Google Scholar 

  19. Jang J, Seol YJ, Kim HJ et al (2014) Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering. J Mech Behav Biomed Mater 37:69–77. doi:10.1016/j.jmbbm.2014.05.004

    Article  CAS  Google Scholar 

  20. Chan KMC, Li RH, Chapman JW et al (2014) Functionalizable hydrogel microparticles of tunable size and stiffness for soft-tissue filler applications. Acta Biomater 10:2563–2573. doi:10.1016/j.actbio.2014.02.021

    Article  CAS  Google Scholar 

  21. Saruchi, Kaith BS, Jindal R, et al (2014) Optimal response surface design of Gum tragacanth based poly[(acrylic acid)-co-acrylamide] IPN hydrogel for controlled release of antihypertensive drug losartan potassium. RSC Adv 4:39822–39829. doi:10.1039/C4RA02803A

    Article  CAS  Google Scholar 

  22. Sharma K, Kumar V, Kaith BS et al (2015) Synthesis of biodegradable gum ghatti based Poly(methacrylic acid-aniline) conducting IPN hydrogel for controlled release of amoxicillin trihydrate. Ind Eng Chem Res 54:1982–1991. doi:10.1021/ie5044743

    Article  CAS  Google Scholar 

  23. Panic VV, Madzarevic ZP, Volkov-husovic T, Velickovic SJ (2013) Poly (methacrylic acid) based hydrogels as sorbents for removal of cationic dye basic yellow 28: kinetics, equilibrium study and image analysis. Chem Eng J 217:192–204. doi:10.1016/j.cej.2012.11.081

    Article  CAS  Google Scholar 

  24. Zhao S, Zhou F, Li L et al (2012) Composites: Part B Removal of anionic dyes from aqueous solutions by adsorption of chitosan-based semi-IPN hydrogel composites. Compos Part B 43:1570–1578. doi:10.1016/j.compositesb.2012.01.015

    Article  CAS  Google Scholar 

  25. Sharma K, Kaith BS, Kumar V et al (2014) Water retention and dye adsorption behavior of Gg-cl-poly(acrylic acid-aniline) based conductive hydrogels. Geoderma 232–234:45–55. doi:10.1016/j.geoderma.2014.04.035

    Article  Google Scholar 

  26. Zheng Y, Yao K, Lee J et al (2010) Well-defined renewable polymers derived from gum rosin. Macromolecules 43:5922–5924. doi:10.1021/ma101071p

    Article  CAS  Google Scholar 

  27. Abeer MM, Amin MCIM, Lazim AM et al (2014) Synthesis of a novel acrylated abietic acid-g-bacterial cellulose hydrogel by gamma irradiation. Carbohydr Polym 110:505–512. doi:10.1016/j.carbpol.2014.04.052

    Article  CAS  Google Scholar 

  28. Wang L, Shi Y, Wang Y et al (2014) Composite catalyst of rosin carbon/Fe3O4: highly efficient counter electrode for dye-sensitized solar cells. Chem Commun (Camb) 50:1701–1703. doi:10.1039/c3cc47163b

    Article  CAS  Google Scholar 

  29. Tan W-X, Lin Z-T, Bu H-T, et al (2012) Nano-micelles based on a rosin derivative as potent sorbents and sinking agents with high absorption capabilities for the removal of metal ions. RSC Adv 2:7279. doi:10.1039/c2ra20767b

    Article  CAS  Google Scholar 

  30. Wang L, Chen X, Liang J et al (2009) Kinetics of the catalytic isomerization and disproportionation of rosin over carbon-supported palladium. Chem Eng J 152:242–250. doi:10.1016/j.cej.2009.04.052

    Article  CAS  Google Scholar 

  31. Lee C-M, Lim S, Kim G-Y, et al (2004) Rosin microparticles as drug carriers: Influence of various solvents on the formation of particles and sustained-release of indomethacin. Biotechnol Bioprocess Eng 9:476–481. doi:10.1007/BF02933489

    Article  CAS  Google Scholar 

  32. Liu X, Xin W, Zhang J (2009) Rosin-based acid anhydrides as alternatives to petrochemical curing agents. Green Chem 11:1018–1025. doi:10.1039/b903955d

    Article  CAS  Google Scholar 

  33. Zhen MI, Xiao-an NIE, Yi-gang W, Chang X, Gui-fu L (2013) Study on synthesis and performance of rosin-derived polyamide as epoxy curing agent. J For Prod Ind 2:5–11

    Google Scholar 

  34. Wilbon PA, Zheng Y, Yao K, Tang C (2010) Renewable rosin acid-degradable caprolactone block copolymers by atom transfer radical polymerization and ring-opening polymerization. Macromolecules 43:8747–8754. doi:10.1021/ma101869q

    Article  CAS  Google Scholar 

  35. Yebra DM, Kiil S, Dam-Johansen K, Weinell C (2005) Reaction rate estimation of controlled-release antifouling paint binders: rosin-based systems. Prog Org Coat 53:256–275. doi:10.1016/j.porgcoat.2005.03.008

    Article  CAS  Google Scholar 

  36. Kaith BS, Sharma R, Sharma K, et al (2014) Effects of O7 + and Ni9 + swift heavy ions irradiation on polyacrylamide grafted gum acacia thin film and sorption of methylene blue. Vacuum 111, 73. doi:10.1016/j.vacuum.2014.09.020

    Article  Google Scholar 

  37. Kaith BS, Jindal R, Sharma R (2015) Synthesis of a Gum rosin alcohol-poly(acrylamide) based adsorbent and its application in removal of malachite green dye from waste water. RSC Adv 5, 43092–43104. doi:10.1039/C5RA04256A

    Article  CAS  Google Scholar 

  38. Sharma K, Kaith BS, Kumar V, et al (2013) Synthesis and properties of poly(acrylamide-aniline)-grafted gum ghatti based nanospikes. RSC Adv 3:25830. doi:10.1039/c3ra44809f

    Article  CAS  Google Scholar 

  39. Sharma K, Kumar V, Kaith BS, et al (2015) Synthesis, characterization and water retention study of biodegradable Gum ghatti-poly(acrylic acid–aniline) hydrogels. Polym Degrad Stab 111:20–31. doi:10.1016/j.polymdegradstab.2014.10.012

    Article  CAS  Google Scholar 

  40. Ren H, Li Y, Zhang S, et al (2008) Flocculation of kaolin suspension with the adsorption of N, N-disubstituted hydrophobically modified polyacrylamide. Colloid Surf A Physicochem Eng Asp 317:388–393. doi: 10.1016/j.colsurfa.2007.11.007

    Article  CAS  Google Scholar 

  41. Das R, Ghorai S, Pal S (2013) Flocculation characteristics of polyacrylamide grafted hydroxypropyl methyl cellulose: an efficient biodegradable flocculant. Chem Eng J 229:144–152. doi:10.1016/j.cej.2013.05.104

    Article  CAS  Google Scholar 

  42. Ruhsing Pan J, Huang C, Chen S, Chung YC (1999) Evaluation of a modified chitosan biopolymer for coagulation of colloidal particles. Colloids Surf A Physicochem Eng Asp 147:359–364. doi:10.1016/S0927-7757(98)00588-3

    Article  Google Scholar 

  43. Yang Z, Yang H, Jiang Z, et al (2013) A new method for calculation of flocculation kinetics combining Smoluchowski model with fractal theory. Colloids Surf A Physicochem Eng Asp 423:11–19. doi:10.1016/j.colsurfa.2013.01.058

    Article  CAS  Google Scholar 

  44. Lee KE, Teng TT, Morad N et al (2010) Flocculation of kaolin in water using novel calcium chloride-polyacrylamide (CaCl2-PAM) hybrid polymer. Sep Purif Technol 75:346–351. doi:10.1016/j.seppur.2010.09.003

    Article  CAS  Google Scholar 

  45. Lee KE, Teng TT, Morad N et al (2011) Flocculation activity of novel ferric chloride-polyacrylamide (FeCl3-PAM) hybrid polymer. Desalination 266:108–113. doi:10.1016/j.desal.2010.08.009

    Article  CAS  Google Scholar 

  46. Chang Q, Hao X, Duan L (2008) Synthesis of crosslinked starch-graft-polyacrylamide-co-sodium xanthate and its performances in wastewater treatment. J Hazard Mater 159:548–553. doi:10.1016/j.jhazmat.2008.02.053

    Article  CAS  Google Scholar 

  47. Ghosh S, Sen G, Jha U, Pal S (2010) Novel biodegradable polymeric flocculant based on polyacrylamide-grafted tamarind kernel polysaccharide. Bioresour Technol 101:9638–9644. doi:10.1016/j.biortech.2010.07.058

    Article  CAS  Google Scholar 

  48. Sasmal D, Singh RP, Tripathy T (2015) Synthesis and flocculation characteristics of a novel biodegradable flocculating agent amylopectin-g-poly(acrylamide-co-N-methylacrylamide). Colloids Surf A Physicochem Eng Asp 482:575–584. doi:10.1016/j.colsurfa.2015.07.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are highly thankful to MHRD for providing financial assistance to carry out the research work. Authors are also thankful to DST-FIST for providing financial assistance for the procurement of equipment used in the characterization of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachna Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jindal, R., Kaith, B.S. & Sharma, R. Central Composite Design Model to Study Swelling of GrA-cl-poly(AAm) hydrogel and Kinetic Investigation of Colloidal Suspension. J Polym Environ 26, 999–1011 (2018). https://doi.org/10.1007/s10924-017-1009-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1009-2

Keywords

Navigation