Skip to main content
Log in

Preparation and Characterization of Bionanocomposites Based on Benzylated Wheat Straw and Nanoclay

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The main goal of this study was to chemically modify the structure of thermoset-like wheat straw using benzylation reaction, change it to thermoplastic material and clarify the precise role of nanoclay on properties of nanocomposites. Thermoplastic benzylated wheat straw (BWS) nanocomposites prepared via solvent casting. The Fourier transform infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectra confirmed the substitution of H groups with benzyl groups. X-ray diffractometry (XRD) and scanning electron microscopy (SEM) tests demonstrated good dispersion and intercalation of nanoclay. Thermal studies confirmed the thermoplasticity of the samples, while the addition of up to 5% nanoclay showed the increase in crystallization, Tg and Tm. Nanoclay also can retard thermal decomposition process. The presence of nanoclay improved all mechanical properties except the elongation at break. Nanocomposite with 5% nanoclay showed minimum water absorption and highest hydrophobicity comparing to other samples. This novel bionanocomposite could be a suitable alternative for replacing oil-based plastics in biomembranes and bioseparation processes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Álvarez-Chávez CR, Edwards S, Moure-Eraso R, Geiser K (2012) Sustainability of bio-based plastics: general comparative analysis and recommendations for improvement. J Clean Prod 23:47–56

    Article  Google Scholar 

  2. Davachi SM, Kaffashi B (2015) Polylactic acid in medicine. Polym Plast Technol Eng 54:944–967

    Article  CAS  Google Scholar 

  3. Satyanarayana KG, Arizaga GG, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—an overview. Prog Polym Sci 34:982–1021

    Article  CAS  Google Scholar 

  4. Chandra R, Takeuchi H, Hasegawa T, Kumar R (2012) Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy 43:273–282

    Article  CAS  Google Scholar 

  5. Hansen MAT, Jørgensen H, Laursen KH, et al (2013) Structural and chemical analysis of process residue from biochemical conversion of wheat straw (Triticum aestivum L.) to ethanol. Biomass Bioenerg 56:572–581

    Article  CAS  Google Scholar 

  6. Nguyen TLT, Hermansen JE, Nielsen RG (2013) Environmental assessment of gasification technology for biomass conversion to energy in comparison with other alternatives: the case of wheat straw. J Clean Prod 53:138–148

    Article  CAS  Google Scholar 

  7. Shrivastava B, Thakur S, Khasa YP et al (2011) White-rot fungal conversion of wheat straw to energy rich cattle feed. Biodegradation 22:823–831

    Article  CAS  Google Scholar 

  8. Al-Akhras NM (2012) Durability of wheat straw ash concrete to alkali-silica reaction. Proc ICE-Constr Mater 166:65–70

    Article  Google Scholar 

  9. Merta I, Tschegg EK (2013) Fracture energy of natural fibre reinforced concrete. Constr Build Mater 40:991–997

    Article  Google Scholar 

  10. Mengeloglu F, Karakuş K (2012) Mechanical properties of injection-molded foamed wheat straw filled HDPE biocomposites: the effects of filler loading and coupling agent contents. BioResources 7:3293–3305

    Google Scholar 

  11. Berthet M-A, Angellier-Coussy H, Chea V, et al (2015) Sustainable food packaging: valorising wheat straw fibres for tuning PHBV-based composites properties. Compos Part Appl Sci Manuf 72:139–147

    Article  CAS  Google Scholar 

  12. Hrabalova M, Schwanninger M, Wimmer R, et al (2011) Fibrillation of flax and wheat straw cellulose: effects on thermal, morphological, and viscoelastic properties of poly (vinylalcohol)/fibre composites. BioResources 6:1631–1647

    CAS  Google Scholar 

  13. Mao H, Zhou D, Hashisho Z, et al (2014) Preparation of pinewood-and wheat straw-based activated carbon via a microwave-assisted potassium hydroxide treatment and an analysis of the effects of the microwave activation conditions. BioResources 10:809–821

    Article  Google Scholar 

  14. Li YK, Wang YD, Zhang Y et al (2013) Adsorption of 4-chlorophenol onto activated carbon prepared from wheat straw: equilibrium study. Appl Mech Mater 319:245–248

    Article  Google Scholar 

  15. Wang DJ, Chen H, Xu H et al (2014) Preparation of wheat straw matrix-g-polyacrylonitrile-based adsorbent by SET-LRP and its applications for heavy metal ion removal. ACS Sustain Chem Eng 2:1843–1848

    Article  CAS  Google Scholar 

  16. Su YY, Xiao W, Jiao YB, et al (2013) Adsorption of copper ions and methylene blue on natural wheat straw and modified wheat straw in single and binary system: column mode. Adv Mater Res 791:52–55

    Article  Google Scholar 

  17. Mohammadi Rovshandeh J, Ekhlasi Kazaj K, Hosseini A, Pouresmaeel Selakjani P (2014) Effect of glycerol and stearic acid as plasticizer on physical properties of benzylated wheat straw. Iran J Chem Chem Eng IJCCE 33:107–116

    Google Scholar 

  18. Ren JL, Sun RC, Liu CF et al (2007) Acetylation of wheat straw hemicelluloses in ionic liquid using iodine as a catalyst. Carbohydr Polym 70:406–414

    Article  CAS  Google Scholar 

  19. Isogai A (2001) Chemical modification of cellulose. In: Hon DN-S, Shiraishi N (ed) Wood cellulose chemistry, Mercer Dekker, New York, p 599–625

    Google Scholar 

  20. Mohammadi-Rovshandeh J (2003) Plasticization of poplar wood by benzylation and acetylation. Iran J Sci Technol 27:353–358

    Google Scholar 

  21. Honma S, Okumura K, Yoshioka M, Shiraishi N (1992) Mechanical and thermal properties of benzylated wood. FRI Bull 176:140–146

    CAS  Google Scholar 

  22. Sereshti H, Mohammadi-Rovshandeh J (2003) Chemical modification of beech wood. Iran Polym J 12:15–20

    CAS  Google Scholar 

  23. Hon DN-S, Ou N-H (1989) Thermoplasticization of wood. I. Benzylation of wood. J Polym Sci Part Polym Chem 27:2457–2482

    Article  CAS  Google Scholar 

  24. Wang HT, Li MF, Yin JY et al (2013) Benzylated hemicellulosic polymers from triploid populous: characterization of physiochemical, structural features and thermal stability. Cellul Chem Technol 47:699–709

    CAS  Google Scholar 

  25. Li M-F, Sun S-N, Xu F, Sun R-C (2011) Cold NaOH/urea aqueous dissolved cellulose for benzylation: synthesis and characterization. Eur Polym J 47:1817–1826

    Article  CAS  Google Scholar 

  26. Mohammadi-Rovshandeh J, Sereshti H (2005) The effect of extraction and prehydrolysis on the thermoplasticity and thermal stability of chemically modified rice straw. Iran Polym J 14:855

    CAS  Google Scholar 

  27. Dongbei WAN (2005) Study on the modification of bagasse by benzylation [J]. For Sci Technol 3:021

    Google Scholar 

  28. Verma D, Gope PC, Maheshwari MK, Sharma RK (2012) Bagasse fiber composites—a review. J Mater Environ Sci 3:1079–1092

    Google Scholar 

  29. Li M-F, Sun S-N, Xu F, Sun R (2012) Benzylation and characterization of cold NaOH/urea pre-swelled bamboo. BioResources 7:1876–1890

    Google Scholar 

  30. Chen J, Su M, Ye J, et al (2014) All-straw-fiber composites: benzylated straw as matrix and additional straw fiber reinforced composites. Polym Compos 35:419–426

    Article  CAS  Google Scholar 

  31. Mortazavi V, Atai M, Fathi M et al (2012) The effect of nanoclay filler loading on the flexural strength of fiber-reinforced composites. Dent Res J 9:273

    CAS  Google Scholar 

  32. Prasanth R, Shubha N, Hng HH, Srinivasan M (2013) Effect of nano-clay on ionic conductivity and electrochemical properties of poly (vinylidene fluoride) based nanocomposite porous polymer membranes and their application as polymer electrolyte in lithium ion batteries. Eur Polym J 49:307–318

    Article  CAS  Google Scholar 

  33. Yang Y, Duan H, Zhang S et al (2013) Morphology control of nanofillers in poly (phenylene sulfide): a novel method to realize the exfoliation of nanoclay by SiO2 via melt shear flow. Compos Sci Technol 75:28–34

    Article  CAS  Google Scholar 

  34. David A, Teodorescu M, Stanescu PO, Stoleriu S (2014) Novel poly (ethylene glycol) composite hydrogels with hydrophilic bentonite nanoclay as the filler. Mater Plast 51:113–118

    Google Scholar 

  35. Hejazi I, Seyfi J, Sadeghi GMM, Davachi SM (2011) Assessment of rheological and mechanical properties of nanostructured materials based on thermoplastic olefin blend and organoclay. Mater Des 32:649–655

    Article  CAS  Google Scholar 

  36. Seyfi J, Hejazi I, Mohamad Sadeghi GM et al (2012) Thermal degradation and crystallization behavior of blend-based nanocomposites: role of clay network formation. J Appl Polym Sci 123:2492–2499

    Article  CAS  Google Scholar 

  37. Barmouz M, Seyfi J, Kazem Besharati Givi M et al (2011) A novel approach for producing polymer nanocomposites by in-situ dispersion of clay particles via friction stir processing. Mater Sci Eng A 528:3003–3006

    Article  Google Scholar 

  38. Bordes P, Pollet E, Avérous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34:125–155

    Article  CAS  Google Scholar 

  39. Lepoittevin B, Devalckenaere M, Pantoustier N et al (2002) Poly (ε-caprolactone)/clay nanocomposites prepared by melt intercalation: mechanical, thermal and rheological properties. Polymer 43:4017–4023

    Article  CAS  Google Scholar 

  40. Krishnamachari P, Zhang J, Lou J et al (2009) Biodegradable poly (lactic acid)/clay nanocomposites by melt intercalation: a study of morphological, thermal, and mechanical properties. Int J Polym Anal Charact 14:336–350

    Article  CAS  Google Scholar 

  41. Wokadala OC, Ray SS, Bandyopadhyay J et al (2015) Morphology, thermal properties and crystallization kinetics of ternary blends of the polylactide and starch biopolymers and nanoclay: the role of nanoclay hydrophobicity. Polymer 71:82–92

    Article  CAS  Google Scholar 

  42. Davachi SM, Bakhtiari S, Pouresmaeel-Selakjani P, et al (2015) Investigating the effect of treated rice straw in PLLA/starch composite: Mechanical, Thermal, Rheological, and Morphological Study. Adv Polym Technol. doi:10.1002/adv.21634

    Google Scholar 

  43. Rhim J-W, Hong S-I, Ha C-S (2009) Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT-Food Sci Technol 42:612–617

    Article  CAS  Google Scholar 

  44. Davoodi S, Oliaei E, Davachi SM, et al (2016) Preparation and characterization of interface-modified PLA/starch/PCL ternary blends using PLLA/triclosan antibacterial nanoparticles for medical applications. RSC Adv 6:39870–39882

    Article  CAS  Google Scholar 

  45. Roman M, Winter WT (2006) Cellulose nanocrystals for thermoplastic reinforcement: effect of filler surface chemistry on composite properties. In: ACS Symposium Series, Oxford University Press, Oxford, pp 99–113

    Google Scholar 

  46. Mohammadi-Rovshandeh J, Pouresmaeel-Selakjani P, Davachi SM et al (2014) Effect of lignin removal on mechanical, thermal, and morphological properties of polylactide/starch/rice husk blend used in food packaging. J Appl Polym Sci 131:41095

    Article  Google Scholar 

  47. Rashdi A, Abdalla A, Salit MS et al (2010) Combined effects of water absorption due to water immersion, soil buried and natural weather on mechanical properties of kenaf fibre unsaturated polyester composites (KFUPC). Int J Mech Mater Eng 5:11–17

    Google Scholar 

  48. Davachi SM, Heidari BS, Hejazi I et al (2017) Interface modified polylactic acid/Starch/Poly ε-caprolactone antibacterial nanocomposite blends for medical applications. Carbohydr Polym 155:336–344

    Article  CAS  Google Scholar 

  49. Bruch M (1996) NMR Spectroscopy Techniques, 2nd edn. CRC Press, New York p. 380

    Google Scholar 

  50. Shaw I, Chadwick J (1998) Principles of environmental toxicology. CRC Press, Philadelphia, p 89

    Google Scholar 

  51. Matulova M, Nouaille R, Capek P et al (2008) NMR study of cellulose and wheat straw degradation by Ruminococcus albus 20. Febs J 275:3503–3511

    Article  CAS  Google Scholar 

  52. Ramos LA, Frollini E, Koschella A, Heinze T (2005) Benzylation of cellulose in the solvent dimethylsulfoxide/tetrabutylammonium fluoride trihydrate. Cellulose 12:607–619

    Article  CAS  Google Scholar 

  53. Ma L (2007) Plasticization of wood by benzylation. Dissertation, University of Idaho

  54. Hon DN-S, Shiraishi N (2000) Wood and cellulosic chemistry, second edition, revised, and expanded. CRC Press, Boca Raton

    Google Scholar 

  55. Wen J-L, Sun S-L, Xue B-L, Sun R-C (2013) Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials 6:359–391

    Article  CAS  Google Scholar 

  56. Ghaffar SH, Fan M (2014) Lignin in straw and its applications as an adhesive. Int J Adhes Adhes 48:92–101

    Article  CAS  Google Scholar 

  57. Han R, Zhang L, Song C et al (2010) Characterization of modified wheat straw, kinetic and equilibrium study about copper ion and methylene blue adsorption in batch mode. Carbohydr Polym 79:1140–1149

    Article  CAS  Google Scholar 

  58. Lambert JB (1987) Introduction to organic spectroscopy. Macmillan, New York

    Google Scholar 

  59. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  60. Lei Y, Wu Q, Clemons CM et al (2007) Influence of nanoclay on properties of HDPE/wood composites. J Appl Polym Sci 106:3958–3966

    Article  CAS  Google Scholar 

  61. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  62. Jaafar J, Ismail AF, Matsuura T (2009) Preparation and barrier properties of SPEEK/Cloisite 15A®/TAP nanocomposite membrane for DMFC application. J Membr Sci 345:119–127

    Article  CAS  Google Scholar 

  63. Kord B (2013) Natural durability of organomodified layered silicate filled wood flour reinforced polypropylene nanocomposites. Sci Eng Compos Mater 20:227–232

    CAS  Google Scholar 

  64. Rana HT, Gupta RK, GangaRao HV, Sridhar LN (2005) Measurement of moisture diffusivity through layered-silicate nanocomposites. Aiche J 51:3249–3256

    Article  CAS  Google Scholar 

  65. Alexandre B, Marais S, Langevin D et al (2006) Nanocomposite-based polyamide 12/montmorillonite: relationships between structures and transport properties. Desalination 199:164–166

    Article  CAS  Google Scholar 

  66. Bharadwaj RK, Mehrabi AR, Hamilton C et al (2002) Structure-property relationships in cross-linked polyester–clay nanocomposites. Polymer 43:3699–3705

    Article  CAS  Google Scholar 

  67. Davachi SM, Kaffashi B, Zamanian A et al (2016) Investigating composite systems based on poly l-lactide and poly l-lactide/triclosan nanoparticles for tissue engineering and medical applications. Mater Sci Eng C 58:294–309

    Article  CAS  Google Scholar 

  68. Davachi SM, Kaffashi B, Torabinejad B et al (2016) Investigating thermal, mechanical and rheological properties of novel antibacterial hybrid nanocomposites based on PLLA/triclosan/nano-hydroxyapatite. Polymer 90:232–241

    Article  CAS  Google Scholar 

  69. Di Y, Iannace S, Di Maio E, Nicolais L (2003) Nanocomposites by melt intercalation based on polycaprolactone and organoclay. J Polym Sci Part B Polym Phys 41:670–678

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamshid Mohammadi-Rovshandeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, M., Davachi, S.M., Mohammadi-Rovshandeh, J. et al. Preparation and Characterization of Bionanocomposites Based on Benzylated Wheat Straw and Nanoclay. J Polym Environ 26, 913–925 (2018). https://doi.org/10.1007/s10924-017-0997-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-0997-2

Keywords

Navigation