Skip to main content
Log in

Rheological Behaviour, Mechanical Properties and Processability of Biodegradable Polymer Systems for Film Blowing

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Films for agricultural or packaging applications are typically made of low density polyethylene (LDPE). They are produced through the film blowing process, which requires the use of polymers with suitable rheological properties. Furthermore, the short shelf-life which is often related to many packed products leads to huge amounts of plastic-based wastes. This suggests the use of biodegradable and/or compostable polymers in replacement for traditional ones. To this regard, only few data exist on the rheological properties of biodegradable polymers undergoing film blowing processing. In this work, a detailed investigation on the rheological, mechanical and processability behaviour of some biodegradable polymers (originating from MaterBi® and Bioflex® commercial groups) was carried out, in order to assess their suitability to industrial-scale film blowing by direct comparison with a traditional non-biodegradable polymer (LDPE). Rheological tests under shear and non-isothermal elongational flow allowed to find out the two most suitable polymer grades. The film blowing production operations at different draw and blow-up ratios (from 2.5 to 3.5) showed that the two samples are suitable for industrial scale operations. Results from tensile and impact tests indicated that the two selected polymers exhibit significantly different mechanical properties (up to 10–15%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hamad K, Kaseem M, Ko YG, Deri F (2014) Biodegradable polymer blends and composites: an overview. Polym Sci Ser A 56:812–829. doi:10.1134/S0965545X14060054

    Article  CAS  Google Scholar 

  2. Kucharczyk P, Otgonzu O, Kitano T, Gregorova A, Kreuh D, Cvelbar U, Sedlarik V, Saha P (2012) Correlation of morphology and viscoelastic properties of partially biodegradable polymer blends based on polyamide 6 and polylactide copolyester. Polym Plast Technol Eng 51:1432–1442

    Article  CAS  Google Scholar 

  3. Shin BY, Narayan R, Il Lee S, Lee TJ (2008) Morphology and rheological properties of blends of chemically modified thermoplastic starch and polycaprolactone. Polym Eng Sci 48:2126–2133

    Article  CAS  Google Scholar 

  4. Jiao J, Wang SJ, Xiao M, Xu Y, Meng YZ (2007) Processability, property, and morphology of biodegradable blends of poly (propylene carbonate) and poly (ethylene-co-vinyl alcohol). Polym Eng Sci 47:174

    Article  CAS  Google Scholar 

  5. Scaffaro R, Dintcheva NT, Marino R, La Mantia FP (2012) Processing and properties of biopolymer/polyhydroxyalkanoates blends. J Polym Environ 20:267–272

    Article  CAS  Google Scholar 

  6. Fang Q, Hanna MA (1999) Rheological properties of amorphous and semicrystalline polylactic acid polymers. Ind Crops Prod 10:47–53

    Article  CAS  Google Scholar 

  7. Cooper-White JJ, Mackay ME (1999) Rheological properties of poly (lactides). Effect of molecular weight and temperature on the viscoelasticity of poly (L-lactic acid). J Polym Sci Part B Polym Phys 37:1803–1814

    Article  CAS  Google Scholar 

  8. Gu S-Y, Zhang K, Ren J, Zhan H (2008) Melt rheology of polylactide/poly (butylene adipate-co-terephthalate) blends. Carbohydr Polym 74:79–85

    Article  CAS  Google Scholar 

  9. Shin B-Y, Lee S-I, Shin Y-S, Balakrishnan S, Narayan R (2004) Rheological, mechanical and biodegradation studies on blends of thermoplastic starch and polycaprolactone. Polym Eng Sci 44:1429–1438

    Article  CAS  Google Scholar 

  10. Sedlarik V, Otgonzul O, Kitano T, Gregorova A, Hrabalova M, Junkar I, Cvelbar U, Mozetic M, Saha P (2012) Effect of phase arrangement on solid state mechanical and thermal properties of polyamide 6/polylactide based co-polyester blends. J Macromol Sci Part B 51:982–1001

    Article  CAS  Google Scholar 

  11. Morreale M, Mistretta MC, Ceraulo M, La Mantia FP (2014) Rheological behavior under shear and non-isothermal elongational flow of biodegradable polymers for foam extrusion. J Polym Environ 22:112–118. doi:10.1007/s10924-013-0622-y

    Article  CAS  Google Scholar 

  12. La Mantia FP, Ceraulo M, Mistretta MC, Morreale M (2016) Effect of hot drawing on the mechanical properties of biodegradable fibers. J Polym Environ 24:56–63. doi:10.1007/s10924-015-0747-2

    Article  CAS  Google Scholar 

  13. La Mantia FP, Ceraulo M, Mistretta MC, Morreale M (2017) Effect of cold drawing on mechanical properties of biodegradable fibers. J Appl Biomater Funct Mater 15:e70–e76. doi:10.5301/jabfm.5000328

  14. La Mantia FP, Arrigo R, Morreale M (2014) Effect of the orientation and rheological behaviour of biodegradable polymer nanocomposites. Eur Polym J 54:11–17

    Article  CAS  Google Scholar 

  15. Ramkumar DHS, Bhattacharya M (1998) Steady shear and dynamic properties of biodegradable polyesters. Polym Eng Sci 38:1426–1435

    Article  CAS  Google Scholar 

  16. Douglas P, Kuhs M, Sajjia M, Khraisheh M, Walker G, Collins MN, Albadarin AB (2016) Bioactive PCL matrices with a range of structural & rheological properties. React Funct Polym 101:54–62

    Article  CAS  Google Scholar 

  17. La Mantia FP, Mistretta MC, Palermo S, Ceraulo M (2015) Morphology, rheology, and mechanical properties of a new nanobiocomposite. J Appl Polym Sci 132:42128

    Article  Google Scholar 

  18. La Mantia FP, Botta L, Morreale M, Scaffaro R (2012) Effect of small amounts of poly(lactic acid) on the recycling of poly(ethylene terephthalate) bottles. Polym Degrad Stab 97:21–24

    CAS  Google Scholar 

  19. La Mantia FP, Valenza A (1989) Shear and nonisothermal elongational characterization of a liquid crystalline polymer. Polym Eng Sci 29:625–631. doi:10.1002/pen.760291003

    Article  CAS  Google Scholar 

  20. Wissbrun KF (1981) Rheology of rod-like polymers in the liquid crystalline state. J Rheol 25:619–662

    Article  CAS  Google Scholar 

  21. Briassoulis D, Babou E, Hiskakis M (2011) Degradation behaviour and field performance of experimental biodegradable drip irrigation systems. J Polym Environ 19:341–361

    Article  CAS  Google Scholar 

  22. Hiskakis M, Babou E, Briassoulis D (2011) Experimental processing of biodegradable drip irrigation systems—possibilities and limitations. J Polym Environ 19:887–907

    Article  CAS  Google Scholar 

  23. Armentano I, Fortunati E, Burgos N, Dominici F, Luzi F, Fiori S, Jiménez A, Yoon K, Ahn J, Kang S, Kenny JM (2015) Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polym Lett 9:583–596

    Article  CAS  Google Scholar 

  24. Scaffaro R, Morreale M, Lo Re G, La Mantia FP (2009) Effect of the processing techniques on the properties of ecocomposites based on vegetable oil-derived Mater-Bi® and wood flour. J Appl Polym Sci 114:2855–2863. doi:10.1002/app.30822

    Article  CAS  Google Scholar 

  25. http://fkur.com/en/marken/bio-flex-3/

  26. Morreale M, Liga A, Mistretta MC, Ascione L, La Mantia FP (2015) Mechanical, thermomechanical and reprocessing behavior of green composites from biodegradable polymer and wood flour. Materials (Basel) 8:7536–7548. doi:10.3390/ma8115406

    Article  Google Scholar 

  27. Cerruti P, Santagata G, d’Ayala GG, Ambrogi V, Carfagna C, Malinconico M, Persico P (2011) Effect of a natural polyphenolic extract on the properties of a biodegradable starch-based polymer. Polym Degrad Stab 96:839–846

    Article  CAS  Google Scholar 

  28. Tawakkal ISMA, Talib RA, Abdan K, Ling CN (2012) Mechanical and physical properties of kenaf-derived cellulose (KDC)-filled polylactic acid (PLA) composites. BioResources 7:1643–1655

    Article  Google Scholar 

  29. Ren J, Krishnamoorti R (2003) Nonlinear viscoelastic properties of layered-silicate-based intercalated nanocomposites. Macromolecules 36:4443–4451

    Article  CAS  Google Scholar 

  30. Ko SW, Gupta RK, Bhattacharya SN, Choi HJ (2010) Rheology and physical characteristics of synthetic biodegradable aliphatic polymer blends dispersed with MWNTs. Macromol Mater Eng 295:320–328

    Article  CAS  Google Scholar 

  31. La Mantia FP, Fontana P, Morreale M, Mistretta MC (2014) Orientation induced brittle—Ductile transition in a polyethylene/polyamide 6 blend. Polym Test 36:20–23. doi:10.1016/j.polymertesting.2014.03.009

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. P. La Mantia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La Mantia, F.P., Ceraulo, M., Mistretta, M.C. et al. Rheological Behaviour, Mechanical Properties and Processability of Biodegradable Polymer Systems for Film Blowing. J Polym Environ 26, 749–755 (2018). https://doi.org/10.1007/s10924-017-0995-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-0995-4

Keywords

Navigation