Skip to main content
Log in

Adsorption Studies of Dimetridazole and Metronidazole onto Biochar Derived from Sugarcane Bagasse: Kinetic, Equilibrium, and Mechanisms

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Biochar derived from sugarcane bagasse was prepared at different pyrolysis temperatures and holding times for adsorption of dimetridazole and metronidazole from aqueous solution. The optimal pyrolysis temperature and holding time were 500 °C and 120 min, respectively. The removal efficiencies of dimetridazole and metronidazole were 98.0% and 88.8%, respectively, at biochar dosage of 4.0 g L−1 and solution temperature of 30 °C. Kinetics data were fitted by four kinetics models, and results indicated that adsorption was governed by pseudo-second-order kinetics. Adsorption is a multi-step process that involves film diffusion and pore filling. In addition, five isotherm models were employed to describe the adsorption equilibrium. Brunauer–Emmett–Teller model presented better fitting for the adsorption equilibrium, and the maximum adsorption capacities were 72.17 and 23.61 mg g− 1 for dimetridazole and metronidazole, respectively. The calculated values of ΔG0 and ΔH0 indicated the non-spontaneous and exothermic nature of the adsorption process at the range of temperature studied. Thermodynamic studies also revealed that physical and chemical adsorptions were co-action. The adsorption mechanisms of dimetridazole and metronidazole onto biochar were mainly hydrogen bonding and π–π interaction. All the results revealed that sugarcane bagasse biochar can be used as alternative to costly adsorbents for the removal of dimetridazole and metronidazole from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Marzo A, Dal Bo L (1998) J Chromatogr 812:17–34

    Article  CAS  Google Scholar 

  2. Zhang Q, Ying G, Pan G et al (2015) Environ Sci Technol 49:6772–6782

    Article  CAS  Google Scholar 

  3. Gros M, Petrović M, Ginebreda A et al (2010) Environ Int 36:15–26

    Article  CAS  Google Scholar 

  4. Leung HW, Jin L, Wei S et al (2013) Environ Health Perspect 121:839–846

    Article  Google Scholar 

  5. Sanderson H, Brain RA, Johnson DJ et al (2004) Toxicology 203:27–40

    Article  CAS  Google Scholar 

  6. Galarini R, Saluti G, Giusepponi D et al (2015) Food Control 48:12–24

    Article  CAS  Google Scholar 

  7. Mudry MD, Carballo M, de V en uesa ML et al (1994) Mutat Res 305:127–132

    Article  CAS  Google Scholar 

  8. Bendesky A, Menéndez D, Ostrosky-Wegman P (2002) Mutat Res 511:133–144

    Article  CAS  Google Scholar 

  9. Zeleny R, Schimmel H, Ulberth F et al (2009) Anal Chim Acta 634:237–242

    Article  CAS  Google Scholar 

  10. Polzer J, Stachel C, Gowik P (2004) Anal Chim Acta 521:189–200

    Article  CAS  Google Scholar 

  11. Rivera-Utrilla J, Prados-Joya G, Sanchez-Polo M et al (2009) J Hazard Mater 170:298–305

    Article  CAS  Google Scholar 

  12. Alexy R, Kümpel T, Kümmerer K (2004) Chemosphere 57:505–512

    Article  CAS  Google Scholar 

  13. Jelic A, Gros M, Ginebreda A et al (2011) Water Res 45:1165–1176

    Article  CAS  Google Scholar 

  14. Sánchez-Polo M, López-Peñalver J, Prados-Joya G et al (2009) Water Res 43:4028–4036

    Article  Google Scholar 

  15. Prados-Joya G, Sanchez-Polo M, Rivera-Utrilla J et al (2011) Water Res 45:393–403

    Article  CAS  Google Scholar 

  16. Carrales-Alvarado D, Ocampo-Pérez R, Leyva-Ramos R et al (2014) J Colloid Interface Sci 436:276–285

    Article  CAS  Google Scholar 

  17. Ocampo-Pérez R, Orellana-Garcia F, Sánchez-Polo M et al (2013) J Colloid Interface Sci 401:116–124

    Article  Google Scholar 

  18. Ahmed MJ, Theydan SK (2013) J Anal Appl Pyrol 99:101–109

    Article  CAS  Google Scholar 

  19. Ahmed, M.J., Theydan, S.K. (2013) Chem Eng J 214:310–318.

  20. Flores-Cano JV, Sánchez-Polo M, Messoud J et al (2016) J Environ Manage 169:116–125

    Article  CAS  Google Scholar 

  21. Lian, F., Sun, B., Song, Z., et al (2014) Chem Eng J 248:128–134.

  22. Shaaban A, Se S-M, Dimin MF et al (2014) J Anal Appl Pyrol 107:31–39

    Article  CAS  Google Scholar 

  23. Ahmad M, Rajapaksha AU, Lim JE et al (2014) Chemosphere 99:19–33

    Article  CAS  Google Scholar 

  24. Karnitz O Jr, Gurgel, L.V.A., de Melo, J.C.P. et al (2007) Bioresour Technol 98:1291–1297

    Article  CAS  Google Scholar 

  25. Inyang M, Gao B, Pullammanappallil P et al (2010) Bioresour Technol 101:8868–8872

    Article  CAS  Google Scholar 

  26. Gong H, Chen Z, Fan Y et al (2015) Renew Energy 83:144–150

    Article  CAS  Google Scholar 

  27. Sun L, Wan S, Luo W (2013) Bioresour Technol 140:406–413

    Article  CAS  Google Scholar 

  28. Tonucci, M.C., Gurgel, L.V.A., Aquino, S.F.d. (2015) Ind Crop Prod 74:111–121.

    Article  CAS  Google Scholar 

  29. Sun L, Chen D, Wan S et al (2015) Bioresour Technol 198:300–308

    Article  CAS  Google Scholar 

  30. Bouaziz, F., Koubaa, M., Kallel, F., et al (2015) Ind Crop Prod 74:903–911.

    Article  CAS  Google Scholar 

  31. Dural, M.U., Cavas, L., Papageorgiou, S.K., et al (2011) Chem Eng J 168:77–85.

    Article  CAS  Google Scholar 

  32. Wu Z, Zhong H, Yuan X et al (2014) Water Res 67:330–344

    Article  CAS  Google Scholar 

  33. Arami M, Yousefi Limaee N, Mahmoodi NM (2006) Chemosphere 65:1999–2008

    Article  CAS  Google Scholar 

  34. Oguz, E. (2005) Colloids Surf Physicochem Eng Aspects 252:121–128.

    Article  CAS  Google Scholar 

  35. Ahmad, M.A., Rahman, N.K. (2011) Chem Eng J 170:154–161.

    Article  CAS  Google Scholar 

  36. Tan, I.A.W., Ahmad AL, Hameed BH (2009) J Hazard Mater 164:473–482

    Article  CAS  Google Scholar 

  37. Chen B, Zhou D, Zhu L (2008) Environ Sci Technol 42:5137–5143

    Article  CAS  Google Scholar 

  38. Yang H, Yan R, Chen H et al (2007) Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  39. Pastorova I, Botto RE, Arisz PW et al (1994) Carbohydr Res 262:27–47

    Article  CAS  Google Scholar 

  40. Haberhauer G, Rafferty B, Strebl F et al (1998) Geoderma 83:331–342

    Article  CAS  Google Scholar 

  41. Labbé N, Harper D, Rials T et al (2006) J Agric Food Chem 54:3492–3497

    Article  Google Scholar 

  42. Yargıç, A.Ş., Yarbay Şahin, R.Z., Özbay, N., et al (2015) J Clean Prod 88:152–159.

    Article  Google Scholar 

  43. Chen B, Johnson EJ, Chefetz B et al (2005) Environ Sci Technol 39:6138–6146

    Article  CAS  Google Scholar 

  44. Ding W, Dong X, Ime IM et al (2014) Chemosphere 105:68–74

    Article  CAS  Google Scholar 

  45. Méndez-Díaz JD, Prados-Joya G, Rivera-Utrilla J et al (2010) J Colloid Interface Sci 345:481–490

    Article  Google Scholar 

  46. Moon, I., Vigneswaran, S., Thiruvenkatachari, R. (2008).

  47. Sepehr MN, Al-Musawi TJ, Ghahramani E et al (2016) Arab J Chem. 10.1016/j.arabjc.2016.07.003

    Google Scholar 

  48. Carrales-Alvarado DH, Ocampo-Pérez R, Leyva-Ramos R et al (2014) J Colloid Interface Sci 436:276–285

    Article  CAS  Google Scholar 

  49. Wan, S., Hua, Z., Sun, L., et al (2016) Process Saf Environ 104:422–435.

  50. Çalışkan E, Göktürk S (2010) Sep Sci Technol 45:244–255

    Article  Google Scholar 

  51. Fu, J., Chen, Z., Wang, M., et al (2015) Chem Eng J 259:53–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by grants from the National Natural Science Foundation of China (No. 51368004), the Natural Science Foundation of Guangxi Province, China (No. 2014GXNSFBA118058 and 2016GXNSFAA380213), and the China Postdoctoral Science Foundation (No. 2016M590405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Chen, D., Wan, S. et al. Adsorption Studies of Dimetridazole and Metronidazole onto Biochar Derived from Sugarcane Bagasse: Kinetic, Equilibrium, and Mechanisms. J Polym Environ 26, 765–777 (2018). https://doi.org/10.1007/s10924-017-0986-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-0986-5

Keywords

Navigation