Skip to main content
Log in

Green Composite Based on PHB and Montmorillonite for KNO3 and NPK Delivery System

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Controlled release fertilizer (CRF) as a safe system for reducing environmental pollution still remains as demand for the agribusiness. Natural and biodegradable polymer materials have been proposed as a prominent and sustainable controlled delivery system. Composite based on polyhydroxybutyrate (PHB), starch, glycerol and montmorillonite (PHBSGMMt) has been proposed as a carrier for controlled release fertilizers, such as KNO3 and NPK. PHBSGMMt with 10 wt% of KNO3 or NPK processed by melting at 162 °C, 60 rpm during 10 min in a mixer chamber of torque rheometer. Composites were characterized according to its structure by FTIR and XRD, in thermal behavior by TGA and DSC, and morphology by SEM. Fertilizers release in water was determined by ionic conductivity. Clay, KNO3, and NPK increased the PHB/starch compatibility and homogeneity, resulting in a well-interfaced material obtained for PHBSGMMTNPK. MMtKNO3 was mainly on PHB phase and MMtNPK on the compatible polymeric phase. These behaviors explain the faster release of KNO3 in water medium since the KNO3 has high solubility and the phase separation creates fissures that turn in water pathway. Kinetic parameters classified the material as a non-Fickian diffusion or anomalous transport mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Azeem B, Kushaari K, Man ZB et al (2014) Review on materials & methods to produce controlled release coated urea fertilizer. J Controlled Release 181:11–21. doi:10.1016/j.jconrel.2014.02.020

    Article  CAS  Google Scholar 

  2. Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803. doi:10.1016/j.biotechadv.2011.06.007

    Article  CAS  Google Scholar 

  3. Bortolin A, Aouada FA, Mattoso LHC, Ribeiro C (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agric Food Chem 61:7431–7439. doi:10.1021/jf401273n

    Article  CAS  Google Scholar 

  4. Aouada FA, De Moura MR, Orts WJ, Mattoso LHC (2010) Polyacrylamide and methylcellulose hydrogel as delivery vehicle for the controlled release of paraquat pesticide. J Mater Sci 45:4977–4985. doi:10.1007/s10853-009-4180-6

    Article  CAS  Google Scholar 

  5. Liang R, Liu M, Wu L (2007) Controlled release NPK compound fertilizer with the function of water retention. React Funct Polym 67:769–779. doi:10.1016/j.reactfunctpolym.2006.12.007

    Article  CAS  Google Scholar 

  6. Wu L, Liu M (2008) Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water-retention. Carbohydr Polym 72:240–247. doi:10.1016/j.carbpol.2007.08.020

    Article  CAS  Google Scholar 

  7. Lubkowski K, Smorowska A, Grzmil B, Kozłowska A (2015) Controlled-release fertilizer prepared using a biodegradable aliphatic copolyester of poly(butylene succinate) and dimerized fatty acid. J Agric Food Chem 63:2597–2605. doi:10.1021/acs.jafc.5b00518

    Article  CAS  Google Scholar 

  8. Dos Santos BR, Bacalhau FB, Pereira TDS et al (2015) Chitosan-montmorillonite microspheres: a sustainable fertilizer delivery system. Carbohydr Polym 127:340–346. doi:10.1016/j.carbpol.2015.03.064

    Article  CAS  Google Scholar 

  9. Calabria L, Vieceli N, Bianchi O et al (2012) Soy protein isolate/poly(lactic acid) injection-molded biodegradable blends for slow release of fertilizers. Ind Crops Prod 36:41–46. doi:10.1016/j.indcrop.2011.08.003

    Article  CAS  Google Scholar 

  10. Costa MME, Cabral-Albuquerque ECM, Alves TLM et al (2013) Use of polyhydroxybutyrate and ethyl cellulose for coating of urea granules. J Agric Food Chem 61:9984–9991. doi:10.1021/jf401185y

    Article  CAS  Google Scholar 

  11. Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6:1–8. doi:10.1021/bm049700c

    Article  CAS  Google Scholar 

  12. Corrêa MCS, Rezende ML, Rosa DS et al (2008) Surface composition and morphology of poly(3-hydroxybutyrate) exposed to biodegradation. Polym Test 27:447–452. doi:10.1016/j.polymertesting.2008.01.007

    Article  Google Scholar 

  13. Nonato RV, Mantelatto PE, Rossell CE V (2001) Integrated production of biodegradable plastic, sugar and ethanol. Appl Microbiol Biotechnol 57:1–5. doi:10.1007/s002530100732

    Article  CAS  Google Scholar 

  14. Bazzo GC, Lemos-Senna E, Pires ATN (2009) Poly(3-hydroxybutyrate)/chitosan/ketoprofen or piroxicam composite microparticles: preparation and controlled drug release evaluation. Carbohydr Polym 77:839–844. doi:10.1016/j.carbpol.2009.03.006

    Article  CAS  Google Scholar 

  15. Pederson EN, McChalicher CWJ, Srienc F (2006) Bacterial synthesis of PHA block copolymers. Biomacromolecules 7:1904–1911. doi:10.1021/bm0510101

    Article  CAS  Google Scholar 

  16. Rosa DDS, Rodrigues TC, Das Graças Fassina Guedes C, Calil MR (2003) Effect of thermal aging on the biodegradation of PCL, PHB-V, and their blends with starch in soil compost. J Appl Polym Sci 89:3539–3546. doi:10.1002/app.12537

    Article  CAS  Google Scholar 

  17. Reis KC, Pereira J, Smith AC et al (2008) Characterization of polyhydroxybutyrate-hydroxyvalerate (PHB-HV)/maize starch blend films. J Food Eng 89:361–369. doi:10.1016/j.jfoodeng.2008.04.022

    Article  CAS  Google Scholar 

  18. Chandra R, Rustgi R (1998) Pergamon biodegradable polymers. Prog Polym Sci 23:1273–1335. doi:10.1016/S0079-6700(97)00039-7

    Article  CAS  Google Scholar 

  19. Xie F, Pollet E, Halley PJ, Avérous L (2013) Starch-based nano-biocomposites. Prog Polym Sci 38:1590–1628. doi:10.1016/j.progpolymsci.2013.05.002

    Article  CAS  Google Scholar 

  20. Mekonnen T, Mussone P, Khalil H, Bressler D (2013) Progress in bio-based plastics and plasticizing modifications. J Mater Chem A 1:13379–13398. doi:10.1039/c3ta12555f

    Article  CAS  Google Scholar 

  21. Ayana B, Suin S, Khatua BB (2014) Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay. Carbohydr Polym 110:430–439. doi:10.1016/j.carbpol.2014.04.024

    Article  Google Scholar 

  22. Pereira EI, Minussi FB, Cruz CCT et al (2012) Urea–montmorillonite-extruded nanocomposites: a novel slow- release material. J Agric Food Chem 60:5267–5272. doi:10.1021/jf3001229

    Article  CAS  Google Scholar 

  23. Rashidzadeh A, Olad A (2014) Slow-released NPK fertilizer encapsulated by NaAlg-g-poly(AA-co-AAm)/MMT superabsorbent nanocomposite. Carbohydr Polym 114:269–278. doi:10.1016/j.carbpol.2014.08.010

    Article  CAS  Google Scholar 

  24. Ritger PL, Peppas NA (1987) A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Controlled Release 5:23–36. doi:10.1016/0168-3659(87)90034-4

    Article  CAS  Google Scholar 

  25. Siepmann J, Peppas NA (2001) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Delivery Rev 48:139–157. doi:10.1016/S0169-409X(01)00112-0

    Article  CAS  Google Scholar 

  26. Xu J, Guo BH, Yang R et al (2002) In situ FTIR study on melting and crystallization of polyhydroxyalkanoates. Polymer 43:6893–6899. doi:10.1016/S0032-3861(02)00615-8

    Article  CAS  Google Scholar 

  27. Corradini E, Marconcini JM, Agnelli JAM, Mattoso LHC (2011) Thermoplastic blends of corn gluten meal/starch (CGM/Starch) and corn gluten meal/polyvinyl alcohol and corn gluten meal/poly (hydroxybutyrate-co- hydroxyvalerate) (CGM/PHB-V). Carbohydr Polym 83:959–965. doi:10.1016/j.carbpol.2010.09.004

    Article  CAS  Google Scholar 

  28. Botana A, Mollo M, Eisenberg P, Sanchez RMT (2010) Effect of modified montmorillonite on biodegradable PHB nanocomposites. Appl Clay Sci 47:263–270. doi:10.1016/j.clay.2009.11.001

    Article  CAS  Google Scholar 

  29. Tomaszewska M, Jarosiewicz A (2002) Use of polysulfone in controlled-release NPK fertilizer. J Agric Food Chem 50:4634–4639.

    Article  CAS  Google Scholar 

  30. Vogel C, Wessel E, Siesler HW (2008) FT-IR Imaging Spectroscopy of Phase Separation in Blends of Poly (3-hydroxybutyrate) with Poly (L-lactic acid) and Poly (E-caprolactone). Biomacromolecules 9:523–527.

    Article  CAS  Google Scholar 

  31. Pushpadass HA, Hanna MA (2009) Age-induced changes in the microstructure and selected properties of extruded starch films plasticized with glycerol and stearic acid. Ind Eng Chem Res 48:8457–8463. doi:10.1021/ie801922z

    Article  CAS  Google Scholar 

  32. Ummartyotin S, Bunnak N, Manuspiya H (2016) A comprehensive review on modified clay based composite for energy based materials. Renew Sustain Energy Rev 61:466–472. doi:10.1016/j.rser.2016.04.022

    Article  CAS  Google Scholar 

  33. Yang Y, Tong Z, Geng Y et al (2013) Biobased polymer composites derived from corn stover and feather meals as double-coating materials for controlled-release and water-retention urea fertilizers. J Agric Food Chem 61:8166–8174. doi:10.1021/jf402519t

    Article  CAS  Google Scholar 

  34. Tănase EE, Popa ME, Râpă M, Popa O (2015) PHB/cellulose fibers based materials: physical, mechanical and barrier properties. Agric Agric Sci Procedia 6:608–615. doi:10.1016/j.aaspro.2015.08.099

    Article  Google Scholar 

  35. Perry PA, Donald AM (2000) The role of plasticization in starch granule assembly. Biomacromolecules 1:424–432. doi:10.1016/j.carbpol.2010.08.041

    Article  CAS  Google Scholar 

  36. Panayotidou E, Kroustalli A, Baklavaridis A et al (2015) Biopolyester-based nanocomposites: structural, thermo-mechanical and biocompatibility characteristics of poly (3-hydroxybutyrate)/montmorillonite clay nanohybrids. J Appl Polym Sci 41628:1–11. doi:10.1002/app.41628

    Google Scholar 

  37. Barud HS, Souza JL, Santos DB et al (2011) Bacterial cellulose/poly(3-hydroxybutyrate) composite membranes. Carbohydr Polym 83:1279–1284. doi:10.1016/j.carbpol.2010.09.049

    Article  CAS  Google Scholar 

  38. Thiré RMSM, Ribeiro TAA, Andrade CT (2006) Effect of starch addition on compression-molded poly(3-hydroxybutyrate)/starch blends. J Appl Polym Sci 100:4338–4347. doi:10.1002/app.23215

    Article  Google Scholar 

  39. Chivrac F, Pollet E, Schmutz M, Avérous L (2008) New approach to elaborate exfoliated starch-based nanobiocomposites. Biomacromolecules 9:896–900. doi:10.1021/bm7012668

    Article  CAS  Google Scholar 

  40. Silva RC, Iulianelli GCV, Azevedo RS et al (2016) PHB nanostructured: Production and characterization by NMR relaxometry. Polym Test. doi:10.1016/j.polymertesting.2015.11.011

    Google Scholar 

  41. Laycock B, Halley P, Pratt S et al (2014) The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci 39:397–442.

    Article  Google Scholar 

  42. Pavlidou S, Papaspyrides CD (2008) A review on polymer-layered silicate nanocomposites. Progress in Polymer Science 33:1119–1198. doi:10.1016/j.progpolymsci.2008.07.008

    Article  CAS  Google Scholar 

  43. Gómez-Martínez D, Partal P, Martínez I, Gallegos C (2013) Gluten-based bioplastics with modified controlled-release and hydrophilic properties. Ind Crops Prod 43:704–710. doi:10.1016/j.indcrop.2012.08.007

    Article  Google Scholar 

  44. Shen Y, Zhao C, Zhou J, Du C (2015) Application of waterborne acrylic emulsions in coated controlled release fertilizer using reacted layer technology. Chin J Chem Eng 23:309–314. doi:10.1016/j.cjche.2014.09.034

    Article  CAS  Google Scholar 

  45. Jamnongkan T, Kaewpirom S (2010) Potassium release kinetics and water retention of controlled-release fertilizers based on chitosan hydrogels. J Polym Environ 18:413–421. doi:10.1007/s10924-010-0228-6

    Article  CAS  Google Scholar 

  46. Xiaoyu N, Yuejin W, Zhengyan W et al (2013) A novel slow-release urea fertiliser: physical and chemical analysis of its structure and study of its release mechanism. Biosyst Eng 115:274–282. doi:10.1016/j.biosystemseng.2013.04.001

    Article  Google Scholar 

  47. Melaj MA, Daraio ME (2013) Preparation and characterization of potassium nitrate controlled-release fertilizers based on chitosan and xanthan layered tablets. J Appl Polym Sci 130:2422–2428. doi:10.1002/app.39452

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to FAPESP-Brazil (Process Number 2014/06566-9) for financial support, Bentonit União for supplying the clay, and PHB Industrial for supplying PHB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roselena Faez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, J.d., Chiaregato, C.G. & Faez, R. Green Composite Based on PHB and Montmorillonite for KNO3 and NPK Delivery System. J Polym Environ 26, 670–679 (2018). https://doi.org/10.1007/s10924-017-0979-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-0979-4

Keywords

Navigation