Skip to main content
Log in

Fatigue Life Behaviour of Glass/Kenaf Woven-Ply Polymer Hybrid Biocomposites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Investigation on the fatigue life of hybrid composites is critical to extend their applications and acceptance among industries; however, there is a lack of research focus on fatigue performance of the hybrid composite. In this study, the fatigue life of glass/kenaf woven-ply hybrid composite with thermoplastic and thermoset polymer matrix was investigated. Hybrid composites consist of two different fibre configurations: kenaf/glass/kenaf and glass/kenaf/glass. Thermoplastic hybrid composites were manufactured through the hot press moulding compression method, while thermoset hybrid composites were fabricated through the vacuum-assisted resin infusion method. The tensile strength and fatigue strengths of the kenaf/glass/kenaf composite have been identified to be significantly lower than those of the glass/kenaf/glass composite regardless of the types of matrix used. However, thermoplastic-based kenaf/glass/kenaf composites are less fatigue sensitive compared to glass/kenaf/glass composites; however, this phenomenon is vice versa for thermoset composites due to the epoxy matrix, which limits the stiffening effect in natural fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dhar Malingam S, Hashim MHR, Said MR, Rivai A, Daud MA, Sivaraos, Che Mahzan MA (2015) Effect of reprocessing palm fiber composite on the mechanical properties. Appl Mech Mater 699:146–150

    Article  Google Scholar 

  2. Bledzki AK, Faruk O, Sperber VE (2006) Cars from bio-fibres. Macromol Mater Eng 291:449–457.

    Article  CAS  Google Scholar 

  3. Jayaraman K (2003) Manufacturing sisal-polypropylene composites with minimum fibre degradation. Compos Sci Technol 63:367–374

    Article  CAS  Google Scholar 

  4. Karahan M, Karahan N (2015) Investigation of the tensile properties of natural and natural/synthetic hybrid fiber woven fabric composites. J Reinf Plast Compos 0(0):1–12

    CAS  Google Scholar 

  5. Kalam A, Sahari BB, Khalid YA, Wong SV (2005) Fatigue behaviour of oil palm fruit bunch fibre/epoxy and carbon fibre/epoxy composites. Compos Struct 71(1):34–44

    Article  Google Scholar 

  6. Thomas S (2002) Hybrid composites. Biocomposites 4:315–328

    Google Scholar 

  7. Wang B, Lu H, Kim G (2002) A damage model for the fatigue life of elastomeric materials. Mech Mater 34(8):475–483

    Article  CAS  Google Scholar 

  8. Amiri M, Khonsari MM (2010) Rapid determination of fatigue failure based on temperature evolution: fully reversed bending load. Int J Fatigue 32(2):382–389

    Article  CAS  Google Scholar 

  9. Sharba MJ, Leman Z, Sultan MTH, Ishak MR, Hanim MAA (2016) Effects of kenaf fiber orientation on mechanical properties and fatigue life of glass/kenaf hybrid composites. BioResources 11(1):1448–1465.

    Article  CAS  Google Scholar 

  10. Shahzad A (2011) Impact and fatigue properties of hemp-glass fiber hybrid biocomposites. J Reinf Plast Compos 30(16):1389–1398

    Article  CAS  Google Scholar 

  11. Asgarinia S, Viriyasuthee C, Philips S, Dube M, Baets J, Vuure AV, Verpoest I, Lessard L (2015) Tension-tension fatigue behaviour of woven flax/epoxy composites. J Reinf Plast Compos 34:857–867

    Article  CAS  Google Scholar 

  12. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibers, biodegradable polymers and biocomposites. An overview. Macromol Mater Eng 276(1):1–24

    Article  Google Scholar 

  13. Anuar H, Ahmad AH, Rasid R, Zakaria S (2005) Tensile behavior and morphological studies of TPNR-KF-CF Hybrid composite. Am J Appl Sci 5:34–39

    Google Scholar 

  14. Zainudin ES, Sapuan SM, Sulaiman S, Ahmad MMHM (2002) Fibre orientation of short fibre reinforced injection moulded thermoplastic composites: a review. J Inject. Mould. Technol. 6(1):1–10

    CAS  Google Scholar 

  15. Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. J Miner Metals Mater Soc 58(11):80–86

    Article  CAS  Google Scholar 

  16. Aktas A, Boyd SW, Shenoi RA (2012) Measurement of permeability and cure using thermocouples in the vacuum assisted resin infusion process to aid simulation. In: 15th European conference on composite materials. Venice 24–28.

  17. Jawaid M, Abdul Khalil HPS, Abu Bakar A, Noorunnisa Khanam P (2011) Chemical resistance, void content and tensile properties of oil palm/jute fibre reinforced polymer hybrid composites. Mater Des 32:1014–1019

    Article  CAS  Google Scholar 

  18. Liang S, Gning PB, Guillaumat LA (2012) Comparative study of fatigue behaviour of flax/epoxy and glass/epoxy composites. Compos Sci Technol 72(5):535–543

    Article  CAS  Google Scholar 

  19. Baley C (2002) Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos Part A 33:939–948.

    Article  Google Scholar 

  20. Harris B (2003) Fatigue in composite-science and technology of the fatigue response of fibre-reinforced plastics. CRC Press, Boca Raton

    Google Scholar 

  21. John S, Herszberg I, Coman F (2001) Longitudinal and transverse damage taxonomy in woven composite components. Compos Part B 32:659–668.

    Article  Google Scholar 

  22. Nygård P, Redford K, Gustafson CG (2002) Interfacial strength in glass fibre-polypropylene composites: influence of chemical bonding and physical entanglement. Compos Interfaces 9(4):365–388

    Article  Google Scholar 

  23. Garkhail SK, Heijenrath RWH, Peijs T (2000) Mechanical properties of natural-fibre-mat-reinforced thermoplastics based on flax fibres and polypropylene. Appl Compos Mater 7:351–372

    Article  CAS  Google Scholar 

  24. Meng Q, Wang Z (2015) Theoretical analysis of interfacial debonding and fiber pull-out in fiber-reinforced polymer-matrix composites. Arch Appl Mech 85:745–759

    Article  Google Scholar 

  25. Wu Z, Wang X, Iwashita K, Sasaki T, Hamaguchi Y (2010) Tensile fatigue behaviour of FRP and hybrid FRP sheets. Compos Part B 41:396–402.

    Article  Google Scholar 

  26. Pickering KL, Aruan Efendy MG, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A 83:98–112.

    Article  CAS  Google Scholar 

  27. Tran LQN, Yuan X, Bhattacharyya D, Fuentes CA, Van Vuure AW, Verpoest I (2015) Fiber-matrix interfacial adhesion in natural fiber composites. Int Mod Phys B 29(10): 1–7.

    Google Scholar 

  28. Shahzad A (2013) A study in physical and mechanical properties of hemp fibres. Adv Mater Sci Eng 2013:1–9

    Article  Google Scholar 

  29. Legras A, Truss R, Chaleat C, Heitzmann MT (2015) A practical toolbox to overcome the multiple challenges of biocomposites extrusion. Composites Australia and CRC ACS 2015 Composites Conference.

  30. Militky J, Kovacic V, Rubnerova J (2002) Influence of thermal treatment on tensile failure of basalt fibres. Eng Fract Mech 69(9):1025–1033

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Universiti Teknikal Malaysia Melaka for their continuous support to this research project. The authors also wish to express their gratitude towards Lembaga Kenaf dan Tembakau Negara for the sponsorship of kenaf fibre and FRGS/1/2015/SG06/FKM/03/F00276 from the Ministry of Higher Education Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sivakumar.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, D., Ng, L.F., Lau, S.M. et al. Fatigue Life Behaviour of Glass/Kenaf Woven-Ply Polymer Hybrid Biocomposites. J Polym Environ 26, 499–507 (2018). https://doi.org/10.1007/s10924-017-0970-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-0970-0

Keywords

Navigation