Skip to main content
Log in

Equilibrium, Kinetic and Thermodynamic Studies Of Lead (II) Sorption on Hydrolyzed Starch Graft Copolymers

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Hydrolyzed starch graft poly (acrylic acid) and starch graft poly(acrylonitrile) copolymers were used as a sorbents for the removal of Pb(II) from aqueous solution in batch process. The sorbents were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. The effect of contact time, initial concentration and temperature were assessed to optimize the conditions for maximum sorption of the metal ions. The experimental data were analyzed by Langmuir, Freundlich, Temkin, Dubinin Radushkevich and Sips isotherm models. The Freundlich and the Sips isotherms confirmed the applicability of the models. The sorption capacity of the sorbent was found to be 118.61 mg/g for starch graft poly (acrylic) acid and 115.83 mg/g for starch graft poly (acrylonitrile). The Sorption kinetics was assessed by Lagergren pseudo first order, pseudo second order, Elovich equation, Intraparticle diffusion and the liquid film diffusion models. The experimental data fitted very well with the Elovich equation and the Intraparticle kinetic models. The thermodynamic analysis showed that the sorption was a spontaneous and endothermic process. The results indicated that starch graft copolymers can be used as an effective sorbents for Pb (II) removal from aqueous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zulkali, M.M.D., Ahmad AL, Norulakmal NH (2006) “Oryza sativa L. husk as heavy metal adsorbent: Optimization with lead as model solution”. Bioresour Technol 97:21–26

    Article  CAS  Google Scholar 

  2. Salamatinia B, Zinatizadeh AA, Kamaruddin AH, Abdullah AZ (2006) “Application of response surface methodology for the optimization of Cu and Zn removals by sorption on pre-treated oil palm frond (OPF)”. Iran J Chem Eng 3(2):73–84

    Google Scholar 

  3. Brady JE (1990) General Chemistry, Principles and structure. 5th edition, Wiley, New York pp. 48–64

    Google Scholar 

  4. Jang A, Seo Y, Bishop PL (2004) “The removal of heavy metals in urban runoff by sorption on mulch”. Environ Pollut 133:117–127

    Article  Google Scholar 

  5. Ahmed, M. M, Sanders JH, Nell WT (2000) “New sorghum and millet cultivar introduction in Sub-Saharan Africa: impacts and research agenda”. Agric Syst 64:55–65

    Article  Google Scholar 

  6. Aisien FA, Amenaghawon NA, Adeboyejo AR (2013) “Application of recycled rubber from scrap tire in the removal of phenol from aqueous solution”. Pacific J Sci Technol 14(2):330–341

    Google Scholar 

  7. Aydin H, Bulut Y, Yerlikaya C (2008): Removal of Copper (II) from aqueous solution by adsorption unto low-cost adsorbents. J Environ Manag 87(1):37–45

    Article  CAS  Google Scholar 

  8. Zulkali, M.M.D., Norulakal, N.H. (2003) “Optimization of lead removal using rice husk by response surface methodology” Proceedings of 17th SOMCHE, Penang, 641–647.

  9. Basci N, Kocadagistan E, Kocadagistan B (2004) “Biosorption of copper(II) from aqueous solutions by wheat shell”. Desalination 164:135–140

    Article  CAS  Google Scholar 

  10. Tarley, C.R.T, Arruda, M.A.Z. (2004) “Biosorption of heavy metals using rice milling by-products. Characterization and application for removal of metals from aqueous effluents”. Chemosphere 54:987–995

    Article  Google Scholar 

  11. Leyva-Ramos R, Rangel-Mendez JR, Mendozabarron J, Fuentes-Rubio L, Guerrerocoronado RM (1997) Adsorption of cadmium (II) from aqueous solution onto activated carbon. Water Sci Technol 30:191–197

    Google Scholar 

  12. Shim JW, Park SJ and Ryu S.K(2001): Effect of modification with HNO3 and NaOH by pitch-based activated carbon fibers. Carbon, 39(11), pp 1635–1642

  13. Ouki SK, Neufeld RD, Perry R (1997):Use of activated carbon for the recovery of chromium from industrial wastewaters. J Chem Technol Biotechnol 70,(1):3–8

    Article  CAS  Google Scholar 

  14. Monser L, Adhoum N, (2002) :Modified activated carbon for the removal of copper, zinc, chromium, and cyanide from wastewater Sepn. Purif. Technol 26, (2–3); 137–146.

    Article  CAS  Google Scholar 

  15. Fanta G.F., Doane W.M (1986): In :modified starches: properties and uses. Wurburg –OB(Ind) CRC Press. Boca Raton pp 149–178.

    Google Scholar 

  16. Fanta GF (1973) Block and Graft Copolymerization. R. J. Ceresa, edn. Wiley-Interscience, :New York, & pp 8–19t;/bib>

  17. Okieimen FE, Ebhoaye JE (1986) Grafting acrylonitrile and acrylic acid monomers on cellulosic materials. J Appl Polym Sci 31(5):1275–1280

    Article  CAS  Google Scholar 

  18. Okieimen FE, Nkumah JE, Egharevba FE (1989) Studies on the grafting of acrylic acid on starch. Eur Polym J 25(4):423–426

    Article  CAS  Google Scholar 

  19. Silverstein RM, Webster FX (1998) Spectrometric identification of organic compounds. Wiley, New York, pp 56–99.

    Google Scholar 

  20. Singh RP, Pandey JK, Rutot D, Degée PH, Dubois PH (1993) Biodegradation of poly(ε-caprolactone)/ starch blends and composites in composting and culture environments: The effect of compatibilization on the inherent biodegradability of the host polymer. Carbohydr Res 338:1759–1769

    Article  Google Scholar 

  21. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  22. Webber TN, Chakravarti RK (1974) Pore and solid diffusion models for fixed bed adsorbers. AIChE Journal 20(2):228–238

    Article  Google Scholar 

  23. Gunay A, Ertan A and Tosun I (2007) Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics. J Hazard Mater 146 362–371

    Article  Google Scholar 

  24. Dabrowski A (2001) Adsorption–from theory to practice. Advance Colloid Interface. Science 93(1–3):135–224

    CAS  Google Scholar 

  25. Dubinin MM, Radushkevich LV (1947) Equation of the characteristic curve of activated charcoal. Proceedings of the Academy of Sciences, Physical Chemistry Section, U.S.S.R. 55, 331–333

  26. Borah D, Senapati K (2006): Adsorption of Cd(II) from aqueous solution onto pyrite. Fuel 85(12–13):1929–1934

    Article  CAS  Google Scholar 

  27. Chen X, Gosset T, Thevenot DR (1990): Batch copper-ion binding and exchange properties of peat. Water Res 24(12):1463–1471

    Article  CAS  Google Scholar 

  28. Eren Z, Acar FN (2006) Adsorption of Reactive Black 5 from an aqueous solution: equilibrium and kinetic studies. Desalination 194(1):1–10

    Article  CAS  Google Scholar 

  29. Blázquez G, Calero M, Hernáinz F, Tenorio G, Martín-Lara MA (2011) Equilibrium biosorption of lead (II) from aqueous solutions by solid waste from olive-oil production. Chemical Engineering Journal 160:615–622

    Article  Google Scholar 

  30. Al-Abachi MQ, Al-Awady NS, Al-Aubakey AM (2013): Economical removal of Cu (II) from aqueous solution using polyacrylic acid hydrogel beads as adsorbent. Iraq J Sci 54(2):123–131

    Google Scholar 

  31. Chauhan GS, Singh B, Sharma RK, Verma M, Jasawal SC, Sharma R (2006) Use of biopolymers and acrylamidee-based hydrogels for sorption of Cu2+, Fe2+ and Cr6+ ions from their aqueous solutions. Desalination 197:75–81

    Article  CAS  Google Scholar 

  32. Ho YS, Mckay G (1999) The sorption of lead (II) ions on peat. Water Res 33(2):578–585

    Article  CAS  Google Scholar 

  33. Gundogan R, Acemiogu B, Aima MH (2004) Copper (II) adsorption from aqueous solution by Herbaceous peat. J Colloid Interface Sci 269:303–309

    Article  CAS  Google Scholar 

  34. Lagergren S. (1898), Zur theorie der sogenannten adsorption gelˆster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar, 24 (4): 1–39.

    Google Scholar 

  35. Ho YS, Mckay G (1998) Kinetic models for the sorption of dye from aqueous solution by wood., Proc Safety Environ Protect 76B::183–191

    Article  Google Scholar 

  36. Rudzinski WE, Dave AM, Vaishnav UH, Kumbar SG, Kulkarni AR, Aminabhavi TM, Russell KE. (2002) Free radical graft polymerization and copolymerization at high temperatures. Prog Polym Sci 27: 1007–1038.

    Article  Google Scholar 

  37. Alkan M. Domirbas O. Dogan M (2007) Adsorption kinetics and thermodynamics of an ionic dye onto sepiolite. Micropor mesopor Mater 101:388–396

    Article  CAS  Google Scholar 

  38. Oladoja N.A. Ofomaja A.E. Idiaghe J.A. Akinlabi A.K. Egbon E.E.(2010) Sorption of Cu (II) ion from aqueous solution by scrap tyre Desalination and water treatment, 16:1–3, 83–94

  39. Kula I, Ugurlu M, Karaoglu H, Celik A (2008) Adsorption of Cd (II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation. Bioresour Technol 99:492–501

    Article  CAS  Google Scholar 

  40. Gupta SS, Bhattacharyya KG (2006) Removal of Cd(II) ions from aqeous solution by kaolinite, montmorillonite and their poly(oxo zirconium) and tetrabutylammonium derivatives. J Hazard Mater B 128:247–257

    Article  Google Scholar 

  41. Zheng Y, Hua S, Wang A (2010) Adsorption behavior of Cu2+ from aqueous solutions onto starch-g-poly(acrylic acid)/sodium humate hydrogels. Desalination 263:170–175

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence O. Ekebafe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekebafe, L.O., Ogbeifun, D.E. & Okieimen, F.E. Equilibrium, Kinetic and Thermodynamic Studies Of Lead (II) Sorption on Hydrolyzed Starch Graft Copolymers. J Polym Environ 26, 807–818 (2018). https://doi.org/10.1007/s10924-017-0949-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-0949-x

Keywords

Navigation