Skip to main content
Log in

Adhesion and Toxicity of Polymers Prepared Using Ionic Liquid Monomers

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The focus of this research was to investigate possible applications of crosslinked polymers that could be prepared through free-radical polymerization of protic ionic liquid monomers. These monomers were synthesized through reactions of selected Bronsted acids and bases, and then polymerized with and without the aid of a free-radical initiator. It was discovered that these polymers had potential applications as adhesives, and bond strengths of various formulations were tested and compared with commercially available adhesives. Additionally, potential environmental toxicity of these polymers was investigated by performing zone of inhibition testing with select bacteria. It was determined that several of these polymers have comparable or superior bond strengths to other common adhesives, although monomer type and initiator concentration can impact these strengths. Toxicity was also dependent on these factors, with some formulations showing high toxicity and others showing few toxic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Seddon KR (1997) J Chem Technol Biotechnol 68:351–356

    Article  CAS  Google Scholar 

  2. Stark A, Seddon KR (2007) In: Seidel A (ed) Encyclopedia of chemical technology, vol 26. Wiley, Hoboken, pp 836–920

  3. Wasserscheid P, Welton T (2008) Ionic liquids in synthesis. Wiley, Weinheim

    Google Scholar 

  4. Earle MJ, Esperancua JMSS, Gilea MA, Canongia-Lopes JN, Rebelo LPN, Magee JW, Seddon KR, Widegren JA (2006) Nature 439(7078):831–834

    Article  CAS  Google Scholar 

  5. Scammells PJ, Scott JL, Singer RD (2005) Aust J Chem 58:155–169

    Article  CAS  Google Scholar 

  6. Kosmulski M, Gustafsson J, Rosenholm JB (2004) Thermochim Acta 412:47–53

    Article  CAS  Google Scholar 

  7. Visser AE, Swatloski RP, Rogers RD (2000) Green Chem 2:1–4

    Article  CAS  Google Scholar 

  8. Bier M, Dietrich S (2010) Mol Phys 108(2):211–214

    Article  CAS  Google Scholar 

  9. Aschenbrenner O, Supasitmongkol S, Taylor M, Styring P (2009) Green Chem 11:1217–1221

    Article  CAS  Google Scholar 

  10. Kolle P, Dronskowski R (2004) Eur J Inorg Chem 11:2313–2320

    Article  Google Scholar 

  11. Fraser KJ, Macfarlane DR (2009) Aust J Chem 62(4):309–321

    Article  CAS  Google Scholar 

  12. Dupont J (2004) J Braz Chem Sox 15(3):341–350

    Article  CAS  Google Scholar 

  13. Dzyuba S, Kollar K, Sabnis S (2009) J Chem Educ 86(7):856–858

    Article  CAS  Google Scholar 

  14. Hough W, Smiglak M, Rodriguez H, Swatloski R, Spear S, Daly D, Pernak J, Grisel J, Carliss R, Soutullo M, Davis J, Rogers R (2007) New J Chem 31:1429–1436

    Article  CAS  Google Scholar 

  15. Lu W, Fadeev A, Qi B, Smela E, Mattes B, Ding J, Spinks G, Mazurkiewicz J, Zhou D, Wallace G, MacFarlane D, Forsyth S, Forsyth M (2002) Science 297(5583):983–987

    Article  CAS  Google Scholar 

  16. Zhang X, Kuhnel R, Hu H, Eder D, Balducci A (2015) Nano Energy 12:207–214

    Article  CAS  Google Scholar 

  17. Wasserscheid P, van Hal R, Bosmann A (2002) Green Chem 4:400–404

    Article  CAS  Google Scholar 

  18. Greaves TL, Drummond CJ (2008) Chem Rev 108(1):206–237

    Article  CAS  Google Scholar 

  19. Jimenez Z, Pojman JA (2007) J Polym Sci A Polym Chem 45:2745–2754

    Article  CAS  Google Scholar 

  20. Jimenez Z, Bounds C, Hoyle CE, Lowe AB, Zhou H, Pojman JA (2007) J Polym Sci A Polym Chem 45:3009–3021

    Article  CAS  Google Scholar 

  21. Zhou H, Jimenez Z, Pojman JA, Paley MS, Hoyle CE (2008) J Polym Sci A Polym Chem 46:3766–3773

    Article  CAS  Google Scholar 

  22. Garcia MT, Gathergood N, Scammelis, PJ (2005) Green Chem 7:9–14

    Article  CAS  Google Scholar 

  23. Muller R-J (2005) In: Steinbuchel A (ed) Biopolymers online, Wiley, Weinheim, pp 365–388

  24. Chandra R, Rustgi R (1998) Prog Polym Sci 23:1273–1335

    Article  CAS  Google Scholar 

  25. Odian G (1991) Principles of polymerization, 3 edn, Wiley, New York, pp 230–231

    Google Scholar 

  26. Romero I, Malta JBNS, Silva C, Mimica LMJ, Soong KH, Hida RY (2009) Indian J Ophthalmol 57(5):341–344

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Anni Moore of Morningside College for her help and advice in conduction of the toxicity testing, and Ms. Nicci McGuire of Morningside College for her assistance in conduction of adhesive testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian McFarland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McFarland, B., Sea, M. Adhesion and Toxicity of Polymers Prepared Using Ionic Liquid Monomers. J Polym Environ 26, 214–223 (2018). https://doi.org/10.1007/s10924-016-0934-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0934-9

Keywords

Navigation