Biosynthesis, Microstructural Characterisations and Investigation of In-Vitro Mutagenic and Eco-Toxicological Response of a Novel Microbial Exopolysaccharide Based Biopolymer


A modified microbial polysaccharide based biopolymer has been investigated as a potential candidate towards development of sustainable biomaterials and bioplastics. An in-depth study was carried out to biosynthesize, characterize and assess any possible mutagenic potential and ecotoxicity of the microbial polysaccharide biopolymer. Microstructural investigations using confocal microscopy, Fourier transform (FT)-Raman depth profile mapping and scanning electron microscopy (SEM) of the biosynthetically modified polysaccharide revealed internal structural perturbations, as well as occlusion of granular pores by extraneous materials. The Raman 3D mapping depth profile along with time-of-flight (MALDI-TOF) mass spectrometry also indicated important structural and surface modifications, which could be correlated to the production of microbial exopolysaccharides and secondary metabolites. The study then looked into any possible genetic mutation and ecological risks associated with the biosynthetically modified polysaccharide through the investigation of genotoxicity and ecotoxicity. The genotoxicity study was carried out through bacterial reverse gene mutation (Ames) test by using two different strains (TA98 and TA100) of bacteria. The results did not indicate any mutagenic effect against either of the strains used for the biopolymer samples and was found to be genotoxically safe. Ecotoxicity tests, carried out using bioluminescent bacteria Vibrio fisheri further indicated no ecotoxicity within the given experimental conditions. The study measured the half maximal effective concentration (EC50) to cause a 50% decrease in the light output of the bacteria, a measure of ecotoxicological response of the biopolymer. Overall, results from this study indicated that the novel biopolymer was genotoxically and ecotoxically safe, which offers immense potential for future use of this biopolymer.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    van Soest JJG, Dziechciarek Y, Philipse AP (2002).) in: Starch and starch containing origins-structure, properties and new technologies. Yuryev VP, Cesaro A, Bergthaller WJ (eds) Nova Science Publishers, New York

    Google Scholar 

  2. 2.

    Wurzburg OB (1986) Modified starches: properties and uses. CRC Press, Boca Raton

    Google Scholar 

  3. 3.

    Sandford PA, Baird J (1983) in: Industrial utilization of polysaccharides. Aspinall GO Academic Press, New York

    Google Scholar 

  4. 4.

    Yua L, Deana K, Li L (2006) Prog Polym Sci 31:576

    Article  Google Scholar 

  5. 5.

    Hulleman S, Janssen F, Feil H (1998) Polymer 39:2043

    CAS  Article  Google Scholar 

  6. 6.

    W. M. Doane (1994) Cereal Foods World 39:556

    Google Scholar 

  7. 7.

    Roper H, Koch H (1990) Starch = Starke 42:123

    CAS  Article  Google Scholar 

  8. 8.

    Chandy T,Sharma C (1990) Biomater Artif Cell Artif Organ 18:24.

    Google Scholar 

  9. 9.

    Nishimura K, Nishimura S, Nishi N, Saiki I, Tokura S (1984) Vaccine 2:93

    CAS  Article  Google Scholar 

  10. 10.

    Shelke NB, James R, Laurencin CT, Kumbar SG (2014) Polym Adv Technol 25:448

    CAS  Article  Google Scholar 

  11. 11.

    Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A (2013) Adv Drug Deliv Rev 65(9):1148–1171

    CAS  Article  Google Scholar 

  12. 12.

    Chadha S, Bhandari J (2013) Pharm. Biomed. Anal 87:82–97

    Google Scholar 

  13. 13.

    Lee KY, Jeong L, Kang Y, Lee SJ, Park WH (2009) Adv Drug Deliv Rev 61(12):1020

    CAS  Article  Google Scholar 

  14. 14.

    Rokhade P, Patil SA, Aminabhavi TM (2007) Carbohydr Polym 67(4):605

    CAS  Article  Google Scholar 

  15. 15.

    Freudenberg U, Liang Y, Kiick KL, Werner C (2016) Adv Mater 28:8861

    CAS  Article  Google Scholar 

  16. 16.

    Palumbo FS, Pitarresi G, Fiorica C, Rigogliuso S, Ghersi G, Giammona G (2013) Mater Sci Eng C 33(5):2541

    CAS  Article  Google Scholar 

  17. 17.

    Cheng Y, Nada AA, Valmikinathan CM, Lee P, Liang D, Yu X, Kumbar SG (2014) J Appl Polym Sci 131(4):39934

    Google Scholar 

  18. 18.

    Filion TM, Kutikov A, Song J (2011) Med Chem Lett 21(17):5067

    CAS  Article  Google Scholar 

  19. 19.

    Raemdonck K, Martens TF, Braeckmans K, Demeester J, De Smedt SC (2013) Adv Drug Deliv Rev 65(9):1123

    CAS  Article  Google Scholar 

  20. 20.

    Ruas-Madiedo P, Tuinier R, Kanning M, Zoon P (2002) Int Dairy J 12:689

    CAS  Article  Google Scholar 

  21. 21.

    Srinivasa PC, Tharanathan RN (2007) Food Rev Int 23:53

    CAS  Article  Google Scholar 

  22. 22.

    Campos CA, Gerschenson LN, Flores SK (2011) Food Bioprocess Technol 4:849

    CAS  Article  Google Scholar 

  23. 23.

    Van den Broek LAM, Knoop RJI, Kappen FHJ, Boeriu CG (2015) Carbohydr Polym 116:237

    Article  Google Scholar 

  24. 24.

    Avella M, de Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Food Chem 93:467

    CAS  Article  Google Scholar 

  25. 25.

    Cerqueira MA, Bourbon AI, Pinheiro AC, Martins JT, B.W.S. Souza, Teixeira JA, Vicente AA (2011) Trends Food Sci Technol 22:662

    CAS  Article  Google Scholar 

  26. 26.

    Rodriguez SB, Ghosh, R. Jeng, Sain M (2010) J Polym Environ 18:430

    CAS  Article  Google Scholar 

  27. 27.

    Banerjee A, Bandyopadhyay R (2016) Int J Biol Macromolec 87:295

    CAS  Article  Google Scholar 

  28. 28.

    Selbmann L, Stingle F, Petruccioli M (2003) Antonie Van Leeuwenhoek 84(2003):135

    CAS  Article  Google Scholar 

  29. 29.

    Huang R, Jeng, Sain M, Saville B, Hubbes M (2007) BioResources 1(2):257

    Google Scholar 

  30. 30.

    Cerning J (1990) FEMS Microbiol Lett 87:113

    CAS  Article  Google Scholar 

  31. 31.

    Patel K, Michaud P, Singhania RR, Soccol CR, Pandey A (2010) Food Technol Biotechnol 48(4):451

    CAS  Google Scholar 

  32. 32.

    Bandyopadhyay-Ghosh S, Jeng R, Mukherjee J, Sain M (2010) J Polym Environ 18:231

    CAS  Article  Google Scholar 

  33. 33.

    Maron M, Ames BN (1983) Mut Res 113:173

    CAS  Article  Google Scholar 

  34. 34.

    Benhamou N, Lafontaine JG, Joly JR, Ouellette GB (1985) Can J Bot 63:1185

    CAS  Article  Google Scholar 

  35. 35.

    Beckman H (1956) Phytopathology 46:605

    CAS  Google Scholar 

  36. 36.

    Brasier CM (1979) Nature 281:78

    Article  Google Scholar 

  37. 37.

    Miller HJ, Elgersma DM (1976) Neth J Plant Pathol 82:51

    Article  Google Scholar 

  38. 38.

    Svaldi R, Elgersma DM (1982) Eur J Forest Pathol 12:29

    CAS  Article  Google Scholar 

  39. 39.

    Wetzel L, Shi Y-C, Schmidt U (2010) Vib Spectrosc 53(1):173

    CAS  Article  Google Scholar 

  40. 40.

    Guerrini A, Mazzotti, L. Boni, Pistocchi R (1998) Aquat Microb Ecol 15:247

    Article  Google Scholar 

  41. 41.

    Grant A, Frison SL, Yeung J, Vasanthan T, Sporns P (2003) J Agric Food Chem 51(21):6137

    CAS  Article  Google Scholar 

  42. 42.

    Laštovičková M, Mazanec K, Benkovská D, Bobál’ová J (2010) J Inst Brew 116:245

    Article  Google Scholar 

  43. 43.

    Flückiger-Isler S, Baumeister M, Braun K, Gervais V, Hasler-Nguyen N, Reimann R, Van Gompel J, Wunderlich H-G, Engelhard G (2004) Mutat Res 558(1–2):181

    Article  Google Scholar 

  44. 44.

    Chandrasekaran CV, Srikanth HS, Anand MS, Joshua Allan J, Hipolith Viji MM, Amit A (2013) Hum Exp Toxicol 32:992

    CAS  Article  Google Scholar 

  45. 45.

    Sprague JB, Ramsay BA (1965) J Fish Res Board Can 22:425

    CAS  Article  Google Scholar 

  46. 46.

    DEV L34-DIN EN ISO 11348, 1998, Beuth Verlag, Berlin, Germany.

  47. 47.

    la Farré M, Garc´ıa M-J, Tirapu L, Ginebreda A, Barceló D (2001) Anal Chim Acta 427:181

    Article  Google Scholar 

  48. 48.

    Persoone B, Marsalek, Blinova I, Törökne A, Zarina D, Manusadzianas L, Naleczawecki G, Tofan L, Stepanova N, Tothova L, Kolar B (2003) Environ Toxicol 18:395

    CAS  Article  Google Scholar 

Download references


The authors gratefully acknowledge Natural Sciences and Engineering Research Council of Canada (NSERC), Ontario Centres of Excellence (OCE) Canada and Canadian General Tower Ltd. for their support for this research and EMSL Analytical, Inc., USA for their help with the toxicity tests.

Author information



Corresponding author

Correspondence to Sanchita Bandyopadhyay-Ghosh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bandyopadhyay-Ghosh, S., Ghosh, S.B., Rodriguez, A. et al. Biosynthesis, Microstructural Characterisations and Investigation of In-Vitro Mutagenic and Eco-Toxicological Response of a Novel Microbial Exopolysaccharide Based Biopolymer. J Polym Environ 26, 365–374 (2018).

Download citation


  • Exopolysaccharide
  • Biopolymer
  • Biomaterial
  • Biocompatibility
  • Ecotoxcity
  • Genotoxicity