Biosynthesis, Microstructural Characterisations and Investigation of In-Vitro Mutagenic and Eco-Toxicological Response of a Novel Microbial Exopolysaccharide Based Biopolymer

  • Sanchita Bandyopadhyay-Ghosh
  • Subrata Bandhu Ghosh
  • Arturo Rodriguez
  • Mohini M. Sain
Original Paper

Abstract

A modified microbial polysaccharide based biopolymer has been investigated as a potential candidate towards development of sustainable biomaterials and bioplastics. An in-depth study was carried out to biosynthesize, characterize and assess any possible mutagenic potential and ecotoxicity of the microbial polysaccharide biopolymer. Microstructural investigations using confocal microscopy, Fourier transform (FT)-Raman depth profile mapping and scanning electron microscopy (SEM) of the biosynthetically modified polysaccharide revealed internal structural perturbations, as well as occlusion of granular pores by extraneous materials. The Raman 3D mapping depth profile along with time-of-flight (MALDI-TOF) mass spectrometry also indicated important structural and surface modifications, which could be correlated to the production of microbial exopolysaccharides and secondary metabolites. The study then looked into any possible genetic mutation and ecological risks associated with the biosynthetically modified polysaccharide through the investigation of genotoxicity and ecotoxicity. The genotoxicity study was carried out through bacterial reverse gene mutation (Ames) test by using two different strains (TA98 and TA100) of bacteria. The results did not indicate any mutagenic effect against either of the strains used for the biopolymer samples and was found to be genotoxically safe. Ecotoxicity tests, carried out using bioluminescent bacteria Vibrio fisheri further indicated no ecotoxicity within the given experimental conditions. The study measured the half maximal effective concentration (EC50) to cause a 50% decrease in the light output of the bacteria, a measure of ecotoxicological response of the biopolymer. Overall, results from this study indicated that the novel biopolymer was genotoxically and ecotoxically safe, which offers immense potential for future use of this biopolymer.

Keywords

Exopolysaccharide Biopolymer Biomaterial Biocompatibility Ecotoxcity Genotoxicity 

References

  1. 1.
    van Soest JJG, Dziechciarek Y, Philipse AP (2002).) in: Starch and starch containing origins-structure, properties and new technologies. Yuryev VP, Cesaro A, Bergthaller WJ (eds) Nova Science Publishers, New YorkGoogle Scholar
  2. 2.
    Wurzburg OB (1986) Modified starches: properties and uses. CRC Press, Boca RatonGoogle Scholar
  3. 3.
    Sandford PA, Baird J (1983) in: Industrial utilization of polysaccharides. Aspinall GO Academic Press, New YorkCrossRefGoogle Scholar
  4. 4.
    Yua L, Deana K, Li L (2006) Prog Polym Sci 31:576CrossRefGoogle Scholar
  5. 5.
    Hulleman S, Janssen F, Feil H (1998) Polymer 39:2043CrossRefGoogle Scholar
  6. 6.
    W. M. Doane (1994) Cereal Foods World 39:556Google Scholar
  7. 7.
    Roper H, Koch H (1990) Starch = Starke 42:123CrossRefGoogle Scholar
  8. 8.
    Chandy T,Sharma C (1990) Biomater Artif Cell Artif Organ 18:24.Google Scholar
  9. 9.
    Nishimura K, Nishimura S, Nishi N, Saiki I, Tokura S (1984) Vaccine 2:93CrossRefGoogle Scholar
  10. 10.
    Shelke NB, James R, Laurencin CT, Kumbar SG (2014) Polym Adv Technol 25:448CrossRefGoogle Scholar
  11. 11.
    Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A (2013) Adv Drug Deliv Rev 65(9):1148–1171CrossRefGoogle Scholar
  12. 12.
    Chadha S, Bhandari J (2013) Pharm. Biomed. Anal 87:82–97Google Scholar
  13. 13.
    Lee KY, Jeong L, Kang Y, Lee SJ, Park WH (2009) Adv Drug Deliv Rev 61(12):1020CrossRefGoogle Scholar
  14. 14.
    Rokhade P, Patil SA, Aminabhavi TM (2007) Carbohydr Polym 67(4):605CrossRefGoogle Scholar
  15. 15.
    Freudenberg U, Liang Y, Kiick KL, Werner C (2016) Adv Mater 28:8861CrossRefGoogle Scholar
  16. 16.
    Palumbo FS, Pitarresi G, Fiorica C, Rigogliuso S, Ghersi G, Giammona G (2013) Mater Sci Eng C 33(5):2541CrossRefGoogle Scholar
  17. 17.
    Cheng Y, Nada AA, Valmikinathan CM, Lee P, Liang D, Yu X, Kumbar SG (2014) J Appl Polym Sci 131(4):39934Google Scholar
  18. 18.
    Filion TM, Kutikov A, Song J (2011) Med Chem Lett 21(17):5067CrossRefGoogle Scholar
  19. 19.
    Raemdonck K, Martens TF, Braeckmans K, Demeester J, De Smedt SC (2013) Adv Drug Deliv Rev 65(9):1123CrossRefGoogle Scholar
  20. 20.
    Ruas-Madiedo P, Tuinier R, Kanning M, Zoon P (2002) Int Dairy J 12:689CrossRefGoogle Scholar
  21. 21.
    Srinivasa PC, Tharanathan RN (2007) Food Rev Int 23:53CrossRefGoogle Scholar
  22. 22.
    Campos CA, Gerschenson LN, Flores SK (2011) Food Bioprocess Technol 4:849CrossRefGoogle Scholar
  23. 23.
    Van den Broek LAM, Knoop RJI, Kappen FHJ, Boeriu CG (2015) Carbohydr Polym 116:237CrossRefGoogle Scholar
  24. 24.
    Avella M, de Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Food Chem 93:467CrossRefGoogle Scholar
  25. 25.
    Cerqueira MA, Bourbon AI, Pinheiro AC, Martins JT, B.W.S. Souza, Teixeira JA, Vicente AA (2011) Trends Food Sci Technol 22:662CrossRefGoogle Scholar
  26. 26.
    Rodriguez SB, Ghosh, R. Jeng, Sain M (2010) J Polym Environ 18:430CrossRefGoogle Scholar
  27. 27.
    Banerjee A, Bandyopadhyay R (2016) Int J Biol Macromolec 87:295CrossRefGoogle Scholar
  28. 28.
    Selbmann L, Stingle F, Petruccioli M (2003) Antonie Van Leeuwenhoek 84(2003):135CrossRefGoogle Scholar
  29. 29.
    Huang R, Jeng, Sain M, Saville B, Hubbes M (2007) BioResources 1(2):257Google Scholar
  30. 30.
    Cerning J (1990) FEMS Microbiol Lett 87:113CrossRefGoogle Scholar
  31. 31.
    Patel K, Michaud P, Singhania RR, Soccol CR, Pandey A (2010) Food Technol Biotechnol 48(4):451Google Scholar
  32. 32.
    Bandyopadhyay-Ghosh S, Jeng R, Mukherjee J, Sain M (2010) J Polym Environ 18:231CrossRefGoogle Scholar
  33. 33.
    Maron M, Ames BN (1983) Mut Res 113:173CrossRefGoogle Scholar
  34. 34.
    Benhamou N, Lafontaine JG, Joly JR, Ouellette GB (1985) Can J Bot 63:1185CrossRefGoogle Scholar
  35. 35.
    Beckman H (1956) Phytopathology 46:605Google Scholar
  36. 36.
    Brasier CM (1979) Nature 281:78CrossRefGoogle Scholar
  37. 37.
    Miller HJ, Elgersma DM (1976) Neth J Plant Pathol 82:51CrossRefGoogle Scholar
  38. 38.
    Svaldi R, Elgersma DM (1982) Eur J Forest Pathol 12:29CrossRefGoogle Scholar
  39. 39.
    Wetzel L, Shi Y-C, Schmidt U (2010) Vib Spectrosc 53(1):173CrossRefGoogle Scholar
  40. 40.
    Guerrini A, Mazzotti, L. Boni, Pistocchi R (1998) Aquat Microb Ecol 15:247CrossRefGoogle Scholar
  41. 41.
    Grant A, Frison SL, Yeung J, Vasanthan T, Sporns P (2003) J Agric Food Chem 51(21):6137CrossRefGoogle Scholar
  42. 42.
    Laštovičková M, Mazanec K, Benkovská D, Bobál’ová J (2010) J Inst Brew 116:245CrossRefGoogle Scholar
  43. 43.
    Flückiger-Isler S, Baumeister M, Braun K, Gervais V, Hasler-Nguyen N, Reimann R, Van Gompel J, Wunderlich H-G, Engelhard G (2004) Mutat Res 558(1–2):181CrossRefGoogle Scholar
  44. 44.
    Chandrasekaran CV, Srikanth HS, Anand MS, Joshua Allan J, Hipolith Viji MM, Amit A (2013) Hum Exp Toxicol 32:992CrossRefGoogle Scholar
  45. 45.
    Sprague JB, Ramsay BA (1965) J Fish Res Board Can 22:425CrossRefGoogle Scholar
  46. 46.
    DEV L34-DIN EN ISO 11348, 1998, Beuth Verlag, Berlin, Germany.Google Scholar
  47. 47.
    la Farré M, Garc´ıa M-J, Tirapu L, Ginebreda A, Barceló D (2001) Anal Chim Acta 427:181CrossRefGoogle Scholar
  48. 48.
    Persoone B, Marsalek, Blinova I, Törökne A, Zarina D, Manusadzianas L, Naleczawecki G, Tofan L, Stepanova N, Tothova L, Kolar B (2003) Environ Toxicol 18:395CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Centre for Bicomposites and Biomaterials ProcessingUniversity of TorontoTorontoCanada
  2. 2.University of GuelphGuelphCanada
  3. 3.Currently at Manipal University JaipurJaipurIndia

Personalised recommendations