Skip to main content
Log in

Water-Blown Castor Oil-Based Polyurethane Foams with Soy Protein as a Reactive Reinforcing Filler

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

To decrease the usage of petroleum based materials, a kind of bio-resource based composite foams were developed with soy protein isolate (SPI) as reactive reinforcing filler in castor oil based polyurethane foams (PUF) prepared by self-rising method using water as a blowing agent. The resulting composite foams were evaluated for their morphology, density, mechanical and biodegradation properties, etc. Fourier transform infrared spectroscopy study exhibited characteristic peaks for SPI and PUF and indicated that the amino groups and hydroxyl groups on SPI reacted with polyphenyl polymethylene polyisocyanates (PAPI) to increase the crosslinking degrees of the composite foams. Densities of the resultant composites were found to increase with increasing SPI content. Mechanical properties of the samples were improved with the increase of SPI content. The compost tests further proved that the composite PUF had better biodegradability than neat PUF. Therefore, this research has provided a simple method of preparing the bio-resource based polyurethane foams, while exploring the potential of using SPI in polyurethane foam applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gupta RK, Ionescu M, Radojcic D, Wan X, Petrovic ZS (2014) Novel renewable polyols based on limonene for rigid polyurethane foams. J Environ Polym Degr 22(3):304–309

    Article  CAS  Google Scholar 

  2. Desroches M, Escouvois M, Auvergne R, Caillol S, Boutevin B (2012) From vegetable oils to polyurethanes: synthetic routes to polyols and main industrial products. Polym Rev 52(1):38–79

    Article  CAS  Google Scholar 

  3. Babb DA (2012) Polyurethanes from renewable resources. Advances in polymer. Science 245:315–360

    CAS  Google Scholar 

  4. [4] Duan J, Reddy K O, Ashok B, Cai J, Zhang L, Rajulu A V (2016) Effects of spent tea leaf powder on the properties and functions of cellulose green composite films. J Environ Chem Eng 4(1):440–448

    Article  CAS  Google Scholar 

  5. Li Y (2011) Development of polyurethane foam and its potential within the biofuels market. Biofuels 2(4):357–359

    Article  CAS  Google Scholar 

  6. Xu J, Jiang J, Hse C, Shupe TF (2012) Renewable chemical feedstocks from integrated liquefaction processing of lignocellulosic materials using microwave energy. Green Chem 14(10):2821–2830

    Article  CAS  Google Scholar 

  7. Campanella A, Bonnaillie LM, Wool RP (2009) Polyurethane foams from soy oil-based polyols. J Appl Polym Sci 112(4):2567–2578

    Article  CAS  Google Scholar 

  8. Moghadam PN, Yarmohamadi M, Hasanzadeh R, Nuri S (2016) Preparation of polyurethane wood adhesives by polyols for mulated with polyester polyols based on castor oil. Int J Adhes Adhes 68:273–282

    Article  CAS  Google Scholar 

  9. Mutlu H, MeierM AR (2010) Castor oil as a renewable resource for the chemical industry. Eur J Lipid Sci Technol 112(1):10–30

    Article  CAS  Google Scholar 

  10. Cordero AI, Amalvy JI, Fortunati E, Kenny JM, Chiacchiarelli LM (2015) The role of nanocrystalline cellulose on the microstructure of foamed castor-oil polyurethane nanocomposites. Carbohydr Polym 134:110–118

    Article  CAS  Google Scholar 

  11. Zhang L, Zhang M, Zhou Y, Hu L (2013) The study of mechanical behavior and flame retardancy of castor oil phosphate-based rigid polyurethane foam composites containing expanded graphite and triethyl phosphate. Polym Degrad Stab 98(12):2784–2794

    Article  CAS  Google Scholar 

  12. Luo Z, Shi Y, Zhao D, He M (2011) Synthesis of epoxidatied castor oil and its effect on the properties of waterborne polyurethane. Proced Eng 18:37–42

    Article  Google Scholar 

  13. Alfani R, Iannace S, Nicolais L (1998) Synthesis and characterization of starch-based polyurethane foams. J Appl Polym Sci 68(5):739–745

    Article  CAS  Google Scholar 

  14. Yoshioka M, Nishio Y, Saito D, Ohashi H, Hashimoto M, Shiraishi N (2013) Synthesis of biopolyols by mild oxypropylation of liquefied starch and its application to polyurethane rigid foams. J Appl Polym Sci 130(1):622–630

    Article  CAS  Google Scholar 

  15. Barikani M, Mohammadi M (2007) Synthesis and characterization of starch-modified polyurethane. Carbohydr Polym 68(4):773–780

    Article  CAS  Google Scholar 

  16. Kwon OJ, Yang SR, Kim DH, Park JS (2007) Characterization of polyurethane foam prepared by using starch as polyol. J Appl Polym Sci 103(3):1544–1553

    Article  CAS  Google Scholar 

  17. Kim DH, Kwon OJ, Yang SR, Park, J S, Chun BC (2007) Structural, thermal, and mechanical properties of polyurethane foams prepared with starch as the main component of polyols. Fibers Polym 8(2):155–162

    Article  CAS  Google Scholar 

  18. Chang LC, Xue Y, Hsieh FH (2001) Dynamic-mechanical study of water-blown rigid polyurethane foams with and without soy flour. J Appl Polym Sci 81(8):2027–2035

    Article  CAS  Google Scholar 

  19. Luo X, Mohanty A, Misra M (2013) Lignin as a reactive reinforcing filler for water-blown rigid biofoam composites from soy oil-based polyurethane. Ind Crops Prod 47:13–19

    Article  CAS  Google Scholar 

  20. Dash S, Swain S K (2013) Effect of nanoboron nitride on the physical and chemical properties of soy protein. Compos Sci Technol 84:39–43

    Article  CAS  Google Scholar 

  21. Friesen K, Chang C, Nickerson M (2015) Incorporation of phenolic compounds, rutin and epicatechin, into soy protein isolate films: mechanical, barrier and cross-linking properties. Food Chem 172:18–23

    Article  CAS  Google Scholar 

  22. Koshy RR, Mary SK, Thomas S, Pothan LA (2015) Environment friendly green composites based on soy protein isolate-A review. Food Hydrocoll 50:174–192

    Article  CAS  Google Scholar 

  23. Routray M, Rout SN, Mohanty GC, Nayak PL (2013) Preparation and characterization of soy protein isolate films processed by compression and casting. J Chem Pharm Res 5(11):752–761

    Google Scholar 

  24. Silva SS, Oliveira JM, Benesch J, Caridade SG, Mano JF, Reis RR (2013) Hybrid biodegradable membranes of silane-treated chitosan/soy protein for biomedical applications. J Bioact Compat Polym 28(4):385–397

    Article  CAS  Google Scholar 

  25. Tian H, Wu W, Guo G, Gaolun, B, Jia Q, Xiang A (2012) Microstructure and properties of glycerol plasticized soy protein plastics containing castor oil. J Food Eng 109(3):496–500

    Article  CAS  Google Scholar 

  26. Ji J, Li B, Zhong WH (2011) An ultraelastic poly (ethylene oxide)/soy protein film with fully amorphous structure. Macromolecules 45(1):602–606

    Article  Google Scholar 

  27. Fang QH, Zhou D, Han WC, Gao Y, Wang N, Yang F (2012) Preparation of soy protein isolate modified by glutaric dialdehyde and its application in rubber composite. Key Eng Mater Trans Tech Publ 501:208–214

    Article  CAS  Google Scholar 

  28. Kumar R, Zhang L (2009) Soy protein films with the hydrophobic surface created through non-covalent interactions. Ind Crops Prod 29(2): 485–494.

    Article  CAS  Google Scholar 

  29. Guo G, Zhang C, Du Z, Zou W, Li H (2015) Structure and properties of poly (vinyl alcohol)/soy protein isolate blend film fabricated through melt processing. J Environ Polym Degr 23(2):183–189

    Article  CAS  Google Scholar 

  30. Guo G, Zhang C, Du Z, Zou W, Tian H, Xiang A, Li H (2015) Structure and property of biodegradable soy protein isolate/PBAT blends. Ind Crops Prod 74:731–736

    Article  CAS  Google Scholar 

  31. Jong L (2015) Influence of protein hydrolysis on the mechanical properties of natural rubber composites reinforced with soy protein particles. Ind Crops Prod 65:102–109

    Article  CAS  Google Scholar 

  32. Wang HJ, Rong MZ, Zhang MQ, Hu J, Chen HW, Czigany T (2008) Biodegradable foam plastics based on castor oil. Biomacromolecules 9(2):615–623

    Article  CAS  Google Scholar 

  33. Shogren RL, Petrovic Z, Liu Z, Erhan SZ (2004) Biodegradation behavior of some vegetable oil-based polymers. J Environ Polym Degr 12(3):173–178

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51373004 and 51203004), Beijing Top Young Innovative Talents Program (2014000026833ZK13), Open Funding of Key Laboratory for Solid Waste Management and Environment Safety (Tsinghua University), Ministry of Education of China (SWMES 2015-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huafeng Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Xiang, A., Tian, H. et al. Water-Blown Castor Oil-Based Polyurethane Foams with Soy Protein as a Reactive Reinforcing Filler. J Polym Environ 26, 15–22 (2018). https://doi.org/10.1007/s10924-016-0914-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0914-0

Keywords

Navigation