Skip to main content
Log in

Investigation on the Influence of EVA Content on the Mechanical and Thermal Characteristics of Poly(lactic acid) Blends

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Poly(lactic acid) (PLA) has gained considerable attention nowadays as a biocompatible polymer owing to its advantage of being prepared from renewable resources. PLA exhibits excellent tensile strength, fabricability, thermal plasticity and biocompatibility properties comparable to many petroleum based plastics. However, low heat distortion temperature, brittleness and slow crystallization rate limit the practical applications of PLA. In order to address these limitations, an attempt has been made in the current work to prepare binary blends of PLA with ethylene vinyl acetate (EVA) at different compositions via melt mixing technique. Systematic investigation on the mechanical properties, thermal degradation and crystallization behavior for PLA-EVA blends was carried out. The impact strength of binary blends of PLA–EVA was found to increase significantly by 176% for 15 wt% of EVA compared to virgin PLA. This is due to the strong interfacial adhesion among PLA and EVA resulting in brittle to ductile transition. Scanning electron microscopy analysis for impact fractured surfaces of binary blends of PLA implied the toughening effect of PLA by EVA. Thermogravimetry analysis results revealed that the activation energy of PLA–EVA blends decreased with increase in EVA content in the PLA matrix. While, differential scanning calorimetry results obtained for PLA–EVA blends revealed the improvement in crystallinity when compared with neat PLA. The effect of EVA on non-isothermal melt crystallization kinetics of PLA was also examined via DSC at various heating rates. Decreasing trend in the t 1/2 values indicated the faster rate of crystallization mechanism after addition of EVA in the PLA matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Muijica-Garcia A, Hooshmand S, Skrifvars M, Kenny JM, Oksman K, Peponi L (2016) RSC Adv 6:9221

    Article  Google Scholar 

  2. Zhu X, Yang Y, Feng J, Zhang X, Zhang C, Tang Z, Zhu J (2013) Carbohyd Polym 1:810

    Google Scholar 

  3. Chiu W, Chang Y, Kuo H, Lin M, Wen H (2008) J App Polym Sci 5&:p 3024t;/bib>

  4. Li X, Xiao Y, Bergeret A, Longerey M (2013) J Che, Polym Compos 2:396

    Google Scholar 

  5. Yao K, Wen X, Tan H, Gong J, Zheng J, Zhao W, Wang Y, Cui D, Na H, Tang T (2013) Soft Matter 9:10891

    Article  CAS  Google Scholar 

  6. Anderson KS, Shreck KM, Hilmyer AM (2008) Polym Rev 48:85

    Article  CAS  Google Scholar 

  7. Noda I, Satkowski MM, Dowrey AE, Marcott C (2004) Macromol Biosci 4:269

    Article  CAS  Google Scholar 

  8. Broz ME, Vander Hart DL, Washburn NR (2003) Biomaterials 24:4181

    Article  CAS  Google Scholar 

  9. Semba TK, Kitagawa US, Ishiaku, Hamada H (2006) J App Polym Sci 101:1816

    Article  CAS  Google Scholar 

  10. Wang R, Wang S, Zhang Y, Wan C, Ma P (2009) Polym Eng Sci 49:26

    Article  CAS  Google Scholar 

  11. Yokohara T, Yamaguchi M (2008) Eur Polym J 44:677

    Article  CAS  Google Scholar 

  12. Jiang L, Wolcott MP, Zhang J (2006) Biomacromolecules 7:199

    Article  Google Scholar 

  13. Zhang N, Ren J, Wang Q (2009) J Mater Sci 44:250

    Article  CAS  Google Scholar 

  14. Oyama HT (2009) Polymer 50:747

    Article  CAS  Google Scholar 

  15. Su Z, Li Q, Liu Y, Hu GH, Wu C (2009) Eur Polym J 45:2428

    Article  CAS  Google Scholar 

  16. Ma P, Bogaerds DG, J.G.P. Goossens, Spoelstra AB, Zhang Y, Lemstra PJ (2012) Eur Polym J 48:146

    Article  CAS  Google Scholar 

  17. Robeson LM (1984) Polym Eng Sci 8:587

    Article  Google Scholar 

  18. Leu YY, Mohd Ishak ZA, Chow WS (2012) J Appl Polym Sci 124:1200

    Article  CAS  Google Scholar 

  19. Valapa RB, Pugazhenthi G, Katiyar V (2015) J Appl Polym Sci 132:41320

    Article  Google Scholar 

  20. Sawai D, Takahashi K, Sasashige A, Kanamoto T, Hyon SH (2003) Macromolecules 36:3601

    Article  CAS  Google Scholar 

  21. Hoogsteen W, Postema AR, Penings AJ, Brinke GT, Zugenmaier P (1990) Macromolecules 23:634

    Article  CAS  Google Scholar 

  22. Valapa RB, Hussain S, Iyer PK, Pugazhenthi G, Katiyar V (2015) J Polym Res 22:1572

    Article  Google Scholar 

  23. Han QY, Wang, Shao C, Zheng G, Li Q, Shen C (2014) J Compos Mater 48:2737

    Article  CAS  Google Scholar 

  24. Maiti SN, Hemalata (2012) J Polym Res 19:1752

    Google Scholar 

  25. Yuzay IE, Auras R, Valdez H, Selke S (2010) Polym Degrad Stab 95:1769

    Article  CAS  Google Scholar 

  26. Chrissafis K, Thermochim (2010) Acta 511:163

    CAS  Google Scholar 

  27. Fan Y, Nishida H, Shirai Y, Endo T (2004) Polym Degrad Stab 84:143

    Article  CAS  Google Scholar 

  28. Kissinger HE (1957) Anal Chem 29:1702

    Article  CAS  Google Scholar 

  29. Valapa RB, Pugazhenthi G, Katiyar V (2015) RSC Adv 5:28410

    Article  CAS  Google Scholar 

  30. Shi X, Zhang G, Phuong TV, Lazzeri A (2015) Molecules 20:1579

    Article  CAS  Google Scholar 

  31. Diez-pascual AM, Díez-Vicente AL (2014) Int J Mol Sci 15:10950

    Article  CAS  Google Scholar 

  32. Valapa RB, Hussain S, Iyer PK, Pugazhenthi G, Katiyar V (2015) J Polym Res 1:175

    Article  Google Scholar 

  33. Pei A, Zhou Q, Berglund LA (2010) Compos Sci Technol 70:815

    Article  CAS  Google Scholar 

  34. Vasanthan N, Ly H, Ghosh S (2011)) J Phys Chem B115:9556

  35. Liu Y, Wang L, He Y, Fan Z, Lia S (2010) Polym Int 59:1616

    Article  CAS  Google Scholar 

  36. Ravari F, Mashak A, Nekoomanesh M, Mobedi H (2013) Polym Bull 70:2569

    Article  CAS  Google Scholar 

  37. Valapa RB, Hussain S, Iyer PK, Pugazhenthi G, Katiyar V (2016) Polym Bull 73:21

    Article  CAS  Google Scholar 

Download references

Acknowledgements

V. H. Sangeetha thankfully acknowledge GREET-ARSTPS-Chennai for financial support for this research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ravi Babu Valapa or T. O. Varghese.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangeetha, V.H., Valapa, R.B., Nayak, S.K. et al. Investigation on the Influence of EVA Content on the Mechanical and Thermal Characteristics of Poly(lactic acid) Blends. J Polym Environ 26, 1–14 (2018). https://doi.org/10.1007/s10924-016-0906-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0906-0

Keywords

Navigation