Journal of Polymers and the Environment

, Volume 25, Issue 4, pp 1251–1261 | Cite as

Structural Analysis of ZnO Nanoparticles Reinforced P(3HB-co-15 mol% 3HHx) Bioplastic Composite

  • J. Vishnu Chandar
  • S. ShanmuganEmail author
  • P. Murugan
  • D. Mutharasu
  • K. Sudesh
Original Paper


Bioplastics are gaining interest due to their biodegradable and biocompatible nature which can be used as a replacement for petroleum based plastics. Poly (3-hydroxybutyrate-co-15 mol% 3-hydroxyhexanoate) [P(3HB-co-15 mol% 3HHx)]/ZnO nanoparticles (NPs) blended bioplastic films were fabricated by solution casting method using chloroform as solvent. The structural characteristics such as peak intensity analysis, crystallite size, dislocation density, and texture coefficient of ZnO NPs mixed P(3HB-co-15 mol% 3HHx) samples were studied using X-Ray Diffraction (XRD) and Fourier Transform Infra-Red (FTIR) analyses. It is clear from the XRD analyses that the crystallinity of P(3HB-co-15 mol% 3HHx) was decreased considerably as ZnO NPs concentration increased. The crystallite size of P(3HB-co-15 mol% 3HHx) was decreased with an increase in ZnO NPs concentration and observed within 150 nm and the dislocation density was decreased with respect to the orientation of P(3HB-co-15 mol% 3HHx) crystals. Simultaneously, the structural properties of ZnO NPs in P(3HB-co-15 mol% 3HHx) matrix were affected noticeably with respect to the ZnO NPs and copolymer concentrations. The characteristic peak positions from FTIR spectra of P(3HB-co-15 mol% 3HHx) copolymer shifted towards higher frequency and evidenced the existence of structural defects. Overall, it was found from both XRD and FTIR analyses that the presence of ZnO NPs affected the crystallinity of P(3HB-co-15 mol% 3HHx) copolymer due to the formation of intermolecular bonds, which restricted the preferential orientation of P(3HB-co-15 mol% 3HHx) molecules which was observed from the texture coefficient analyses. Based on these observations, ZnO NPs at low concentrations can be used with P(3HB-co-15 mol% 3HHx) copolymer effectively and the resulting composite may be used for packaging application.


P(3HB) homopolymer Biocomposite XRD Structural parameters FTIR ZnO nanoparticles 



This study was supported by Long Term Research Grant Scheme (LRGS) from Ministry of Education. Vishnu Chandar Janakiraman and Murugan Paramasivam express their gratitude to USM Fellowship for financial support. We thank Dr. Hideki Abe from RIKEN, Japan for his valuable comments.


  1. 1.
    Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Carbohydr Polym 71(2):235–244CrossRefGoogle Scholar
  2. 2.
    Flechter A (1993) Plastics from bacteria and for bacteria: PHA as natural, biodegradable polyesters. Springer, New YorkGoogle Scholar
  3. 3.
    Abdelwahab MA, Flynn A, Chiou B-S, Imam S, Orts W, Chiellini E (2012) Polym Degrad Stab 97:1822CrossRefGoogle Scholar
  4. 4.
    Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Food Chem 93:467CrossRefGoogle Scholar
  5. 5.
    Khanna S, Srivastava AK (2005) Process Biochem 40:607CrossRefGoogle Scholar
  6. 6.
    Steinbüchel A, Valentin HE (1995) FEMS Microbiol Lett 128(3):219–228CrossRefGoogle Scholar
  7. 7.
    Galego N, Rozsa C, Sanchez R, Fung J, Vázquez A, Santo Tomas J (2000) Polym Test 19:485CrossRefGoogle Scholar
  8. 8.
    Steinbüchel A, Füchtenbusch B (1998) Trends Biotechnol 16:419CrossRefGoogle Scholar
  9. 9.
    Wu CS (2006) J Appl Polym Sci 102:3565CrossRefGoogle Scholar
  10. 10.
    Jain R, Kosta S, Tiwari A (2010) Chron Young Sci 1:10Google Scholar
  11. 11.
    Keenan TM, Tanenbaum SW, Stipanovic AJ, Nakas JP (2004) Biotechnol Prog 20(6):1697–1704CrossRefGoogle Scholar
  12. 12.
    Kahar P, Tsuge T, Taguchi K, Doi Y (2004) Polym Degrad Stab 83:79CrossRefGoogle Scholar
  13. 13.
    Sudesh K, Abe H, Doi Y (2000) Prog Polym Sci 25:1503CrossRefGoogle Scholar
  14. 14.
    Xu C, Qiu Z (2011) Polym Adv Technol 22:538CrossRefGoogle Scholar
  15. 15.
    Sadat-Shojai M, Khorasani M-T, Jamshidi A, Irani S (2013) Mater Sci Eng C 33:2776CrossRefGoogle Scholar
  16. 16.
    Bitinis N, Hernández M, Verdejo R, Kenny JM, Lopez-Manchado MA (2011) Adv Mater 23(44):5229–5236CrossRefGoogle Scholar
  17. 17.
    Vaseem M, Umar A, Hahn Y.-B (2010) (American Scientific Publishers, New York), p 1Google Scholar
  18. 18.
    Díez-Pascual AM, Díez-Vicente AL (2014) Int J Mole Sci 15:10950CrossRefGoogle Scholar
  19. 19.
    Yu W, Lan C-H, Wang S-J, Fang P-F, Sun Y-M (2010) Polymer 51:2403CrossRefGoogle Scholar
  20. 20.
    Ye HM, Wang Z, Wang HH, Chen GQ, Xu J (2010) Polymer 51(25):6037–6046CrossRefGoogle Scholar
  21. 21.
    Oliveira FC, Dias ML, Castilho LR, Freire DM (2007) Bioresour Technol 98:633CrossRefGoogle Scholar
  22. 22.
    Devi AB, Nachiyar CV, Kaviyarasi T, Samrot AV (2015) Int J Pharm Pharm Sci 7(3):140–144Google Scholar
  23. 23.
    Liau CP, Bin Ahmad M, Shameli K, Yunus WMZW, Ibrahim NA, Zainuddin N, Then YY (2014) Sci World J 2014:1–9. doi: 10.1155/2014/572726
  24. 24.
    Nair AM, Annamalai K, Kannan SK, Kuppusamy S (2014) Malaya J Biosci 1:8Google Scholar
  25. 25.
    Thire RMDSM, Arruda LC, Barreto LS (2011) Mater Res 14:340CrossRefGoogle Scholar
  26. 26.
    Rithin Kumar N, Crasta V, Bhajantri RF, Praveen B (2014) J Polym 2014Google Scholar
  27. 27.
    Makinson J, Lee J, Magner S, De Angelis R, Weins W, Hieronymus A (2000) Adv X-Ray Anal 42:407Google Scholar
  28. 28.
    Guo W, Duan J, Geng W, Feng J, Wang S, Song C (2013) Microbiol Res 168:231CrossRefGoogle Scholar
  29. 29.
    El-Kader FA, Hakeem N, Elashmawi I, Ismail A (2013) Aust J Basic Appl Sci 7:608Google Scholar
  30. 30.
    Venkateswarlu K, Sandhyarani M, Nellaippan T, Rameshbabu N (2014) Proced Mate Sci 5:212CrossRefGoogle Scholar
  31. 31.
    Márquez JAR, Rodríguez CMB, Herrera CM, Rosas ER, Angel OZ, Pozos OT (2011) Int J Electrochem Sci 6:4059Google Scholar
  32. 32.
    Sundaramoorthy P, Giri Dev V, Renuka Devi M (2012) Indian J Fibre Text Res 37:16Google Scholar
  33. 33.
    Bloembergen S, Holden DA, Hamer GK, Bluhm TL, Marchessault RH (1986) Macromolecules 19:2865CrossRefGoogle Scholar
  34. 34.
    Shamala T, Divyashree M, Davis R, Kumari KL, Vijayendra S, Raj B (2009) Indian J Microbiol 49:251CrossRefGoogle Scholar
  35. 35.
    Preethi R, Sasikala P, Aravind J (2012) Res Biotechnol 3:61Google Scholar
  36. 36.
    Tian G, Wu Q, Sun S, Noda I, Chen GQ (2002) J Polym Sci Part B Polym Phys 40:649CrossRefGoogle Scholar
  37. 37.
    Farago PV, Raffin RP, Pohlmann AR, Guterres SS, Zawadzki SF (2008) J Braz Chem Soc 19:1298CrossRefGoogle Scholar
  38. 38.
    Chen B, Sun X, Xu C, Tay B (2004) Phys E Low Dimens Syst Nanostruct 21:103CrossRefGoogle Scholar
  39. 39.
    Ismail HM (1991) J Anal Appl Pyrol 21:315CrossRefGoogle Scholar
  40. 40.
    He Y, Wang X, Jin P, Zhao B, Fan X (2009) Spectrochim Acta Part A Mol Biomol Spectrosc 72:876CrossRefGoogle Scholar
  41. 41.
    Viswanatha R, Venkatesh T, Vidyasagar C, Nayaka YA, Arch Y (2012) Arch Appl Sci Res 4:480Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • J. Vishnu Chandar
    • 1
  • S. Shanmugan
    • 1
    Email author
  • P. Murugan
    • 2
  • D. Mutharasu
    • 1
  • K. Sudesh
    • 2
  1. 1.School of PhysicsUniversiti Sains Malaysia (USM)MindenMalaysia
  2. 2.Ecobiomaterial Research Laboratory, School of Biological SciencesUniversiti Sains Malaysia (USM)MindenMalaysia

Personalised recommendations