Food Industry Co-streams: Potential Raw Materials for Biodegradable Mulch Film Applications

  • Sanna Virtanen
  • Ravindra Reddy Chowreddy
  • Sibel Irmak
  • Kaisu Honkapää
  • Loren Isom
Original Paper


Vast amounts of co-streams are generated from plant and animal-based food processing industries. Efficient utilization of these co-streams is important from an economic and environmental perspective. Non-utilization or under-utilization of co-streams results in loss of potential revenues, increased disposal cost of these products and environmental pollution. At present, extensive research is taking place around the globe towards recycling of co-streams to generate value-added products. This review evaluates various co-streams from food processing industries as raw materials in developing biodegradable agricultural mulching applications. Among the agriculture-based co-streams, potato peels, tomato peels, carrot residues, apple pomace, coffee residues and peanut residues were reviewed with respect to production amount, composition, film forming components and film forming capabilities. Similarly, selected co-streams from slaughterhouses, poultry and fish processing industries were also reviewed and evaluated for the same purpose.


Mulch films Raw materials Food co-streams Biodegradable polymers 


  1. 1.
    Preparatory study on food waste across E.U.-27 for the European Commission (2010)
  2. 2.
    Schieber A, Stintzing FC, Carle R (2001) Trends Food Sci Technol 12:401CrossRefGoogle Scholar
  3. 3.
    Lin CS, Pfaltzgraff LA, Herrero-Davila L, Mubofu EB, Abderrahim S, Clark JH, Koutinas AA, Kopsahelis N, Stamatelatou K, Dickson F, Thankappan S (2013) Energy Environ Sci 6(2):426CrossRefGoogle Scholar
  4. 4.
    Al-Weshahy A, Rao VA (2012) Potato peel as a source of important phytochemical antioxidant nutraceuticals and their role in human health—a review. INTECH Open Access Publisher Google Scholar
  5. 5.
    Jayathilakan K, Sultana K, Radhakrishna K, Bawa AS (2012) J Food Sci 49(3):278Google Scholar
  6. 6.
    Chiellini E, Cinelli P, Chiellini F, Imam SH (2004) Macromol Biosci 4(3):218CrossRefGoogle Scholar
  7. 7.
    Se-Kwon K, Eresha M (2006) Food Res Int 39:383CrossRefGoogle Scholar
  8. 8.
    Ravindran R, Jaiswal AK (2016) Trends Biotechnol 34(1):58CrossRefGoogle Scholar
  9. 9.
    Sheldon RA (2014) Green Chem 16(3):950CrossRefGoogle Scholar
  10. 10.
    Pfaltzgraff LA, Cooper EC, Budarin V, Clark JH (2013) Green Chem 15(2):307CrossRefGoogle Scholar
  11. 11.
    Toldra F, Mora L, Reig M (2016) Meat Sci 120:54CrossRefGoogle Scholar
  12. 12.
    Mekonnen T, Mussone P, Bressler D (2016) Crit Rev Biotechnol 36(1):120CrossRefGoogle Scholar
  13. 13.
    Brandelli A, Sala L, Kalil SJ (2015) Food Res Int 73:3CrossRefGoogle Scholar
  14. 14.
    Demirbas A (2007) Prog Energy Combust Sci 33(1):1CrossRefGoogle Scholar
  15. 15.
    Menon V, Mala R (2012) Prog Energy Combust Sci 38(4):522CrossRefGoogle Scholar
  16. 16.
    Nanda S, Javeed M, Sivamohan NR, Janusz AK, Ajay KD (2014) Biomass Convers Biorefin 4(2):157CrossRefGoogle Scholar
  17. 17.
    Balat M (2011) Energ Convers Manag 52(2):858CrossRefGoogle Scholar
  18. 18.
    Bridgwater AV (2003) Chem Eng J 91(2):87CrossRefGoogle Scholar
  19. 19.
    Effendi A, Gerhauser H, Bridgwater AV (2008) Renew Sustain Energy Rev 12(8):2092CrossRefGoogle Scholar
  20. 20.
    Zhang L, Xu CC, Champagne P (2010) Energy Convers Manag 51(5):969CrossRefGoogle Scholar
  21. 21.
    Panwar NL, Kothari R, Tyagi VV (2012) Renew Sustain Energy Rev 16(4):1801CrossRefGoogle Scholar
  22. 22.
    Naik SN, Goud VV, Rout PK, Dalai AK (2010) Renew Sustain Energy Rev 14(2):578CrossRefGoogle Scholar
  23. 23.
    Zhou CH, Xia X, Lin CX, Tong DS, Beltramini J (2011) Chem Soc Rev 40(11):5588CrossRefGoogle Scholar
  24. 24.
    Balasundram N, Sundram K, Samman S (2006) Food Chem 99(1):191CrossRefGoogle Scholar
  25. 25.
    Torres JA, Chen YC, Rodrigo-Garcia J, Jaczynski J (2007) Recovery of co-streams from seafood processing streams. In: Shahidi F (ed) Maximising the value of marine co-streams. Woodhead Publishing in Food Science, Technology and Nutrition, p 65Google Scholar
  26. 26.
    Choudhury GS, Gogoi BK (1996) J Aquat Food Prod Technol 4(4):37CrossRefGoogle Scholar
  27. 27.
    Rustad T, Storrø I, Slizyte R (2011) Int J Food Sci Technol 46(10):2001CrossRefGoogle Scholar
  28. 28.
    Vázquez JA, Rodríguez-Amado I, Montemayor MI, Fraguas J, González MD, Murado MA (2013) Mar Drugs 11(3):747CrossRefGoogle Scholar
  29. 29.
    Sulabo RC, Stein HH (2013) J Anim Sci 91(3):1285CrossRefGoogle Scholar
  30. 30.
    Cascarosa E, Gea G, Arauzo J (2012) Renew Sustain Energy Rev 16(1):942CrossRefGoogle Scholar
  31. 31.
    Nikolaev IV, Sforza S, Lambertini F, Ismailova DY, Khotchenkov VP, Volik VG, Dossena A, Popov VO, Koroleva OV (2016) Food Chem 197:611CrossRefGoogle Scholar
  32. 32.
    Kasirajan N (2012) Agron Sustain Dev 32(2):501CrossRefGoogle Scholar
  33. 33.
    Corbin A, Cowan J, Miles C, Hayes D, Dorgan J, Inglis D (2013) Using biodegradable plastics as agricultural mulches. Washington State University Extension Fact Sheet: FS103E, pp 1–6. Available at
  34. 34.
    Kapanen A, Schettini E, Vox G, Itavaara M (2008) J Polym Environ 16(2):109CrossRefGoogle Scholar
  35. 35.
    Otey FH, Mark AM (1976) U.S. Patent No. 3,949,145Google Scholar
  36. 36.
    Halley P, Rutgers R, Coombs S, Kettels J, Gralton J, Christie G, Jenkins M, Beh H, Griffin K, Jayasekara R, Lonergan G (2001) Starch-Stärke 53:362CrossRefGoogle Scholar
  37. 37.
    Vox G, Schettini E (2007) Polym Test 26(5):639CrossRefGoogle Scholar
  38. 38.
    Ali Y, Ghorpade V, Weber R, Hanna M (2004) U.S. Patent No. 6,672,001Google Scholar
  39. 39.
    Sartore L, Vox G, Schettini E (2013) J Polym Environ 21(3):718CrossRefGoogle Scholar
  40. 40.
    Malinconico M, Immirzi B, Santagata G, Schettini E, Vox G, Mugnozza GS (2007) An overview on innovative biodegradable materials for agricultural applications. In: Moeller HW (ed) Progress in polymer degradation and stability research. Nova Science Publishers, Inc, p 69Google Scholar
  41. 41.
    FAO (2012) FAOSTAT. Food and Agriculture Organization of the United Nations Accessed 6 June 2016
  42. 42.
    Sanchez-Vazquez SA, Hailes HC, Evans JRG (2013) Polym Rev 53:627CrossRefGoogle Scholar
  43. 43.
    Burlingame B, Mouillé B, Charrondière R (2009) J Food Comp Anal 22:494CrossRefGoogle Scholar
  44. 44.
    Helsky T, Anttalainen M, Palviainen S, Kemppainen P, Lehto M, Salo T, Mäkelä M, Tuominen A, Piilo T (2006) Paras käytettävissä oleva tekniikka (BAT) perunan ja juuresten koneellisessa kuorinnassa ja käsittelyssä. In: Suomen ympäristö 57/2006. Edita Prima Oy, HelsinkiGoogle Scholar
  45. 45.
    Adler S, Honkapää K, Saarela M, Slizyte R, Sterten H, Vikman M, Løes A-K (2014) Utilisation of co-streams in the Norwegian food processing industry. Bioforsk Report Vol. 9 Nr. 82Google Scholar
  46. 46.
    Haugaard VK, Mortensen G, Mattsson B, Sonesson U (2003) Biobased food packaging. Environmentally friendly food processing. CRC Press, Boca RatonGoogle Scholar
  47. 47.
    Rogols S, Sirovatka DM, Widmaier RG (2002) Packaging and structural materials comprising potato peel waste. EP11712 90 (A1)Google Scholar
  48. 48.
    Cao L, Zhou R (2009) Edible packaging film prepared by potato residue and preparation method. CN101456979 (A)Google Scholar
  49. 49.
    Cao L, Bian X (2011) Edible packaging film prepared from carboxymethylated potato residues and preparation method thereof. CN102153783 (A)Google Scholar
  50. 50.
    Kang HJ, Min SC (2010) LWT Food Sci Technol 43(6):903CrossRefGoogle Scholar
  51. 51.
    Tammineni N, Ünlü G, Min SC (2013) Int J Food Sci Technol 48(1):211CrossRefGoogle Scholar
  52. 52.
    Zhang Y, Yuan X, Thompson MR, Liu Q (2012) J Appl Polym Sci 125:3250CrossRefGoogle Scholar
  53. 53.
    Rommi K, Rahikainen J, Vartiainen J, Holopainen U, Lahtinen P, Honkapää K, Lantto R (2016) J Appl Polym Sci 133(42862):1Google Scholar
  54. 54.
    Merlo CA (2001) Additional Resource G: Alternative methods for disposal/ utilization of organic by-products from the literature. Presented at the 1992 Food Industry Environmental Conference, Georgia Institute of Technology, Atlanta, Georgia Copyright 1992, pp G1–G14. Accessed 14 Sept 2001
  55. 55.
    Studt T (1990) “Degradable plastics.” R&D Magazine, March issue 1990, pp 50–56Google Scholar
  56. 56.
    Keeler R (1991) “Don’t let food go to waste—make plastic out of it.” R&D Magazine, February issue 1991, pp 52–57Google Scholar
  57. 57.
    Ewans K (1991) Nematologica 37:225CrossRefGoogle Scholar
  58. 58.
    Stone LEW, Webley DP (1975) Plant Pathol 24:74CrossRefGoogle Scholar
  59. 59.
    Lindhardt K (1959) Kartoffelål—en samlet oversikt. Statens Plantetilsyn, Opplysende Skriftrække, København, pp 1–52Google Scholar
  60. 60.
    Ebert AW (2013) Chapter 16: ex situ conservation of plant genetic resources of major vegetables. In: Normah MN, Chin HF, Reed BM (eds) Conservation of tropical plant species. Springer, New York, pp 373–417CrossRefGoogle Scholar
  61. 61.
    Bao B, Chang KC (1994) J Food Sci 59:1159CrossRefGoogle Scholar
  62. 62.
    Rani B, Kawatra A (1994) Plant Foods Hum Nutr 45:343CrossRefGoogle Scholar
  63. 63.
    Sharma K, Karki S, Thakur N, Attri S (2012) J Food Sci Technol 49:22CrossRefGoogle Scholar
  64. 64.
    Chau CF, Chen CH, Lee MH (2004) Food Sci Technol 37:155Google Scholar
  65. 65.
    Chen BH, Tang YC (1998) J Agric Food Chem 46:2312CrossRefGoogle Scholar
  66. 66.
    Liessens B, Grootaerd H, Verstraete W (1997) Utilization of carrot pulp/pomace as alternative RACOD-source enhancing granulation and sludge bed stability in UASB reactors. Eleventh Forum Appl Biotechnol Fac Agric Appl Biol Sci 62:1553Google Scholar
  67. 67.
    Garg N, Hang YD (1995) J Food Sci Technol 32:119Google Scholar
  68. 68.
    Yoon KY, Cha M, Shin SR, Kim KS (2005) Food Chem 92:151CrossRefGoogle Scholar
  69. 69.
    Bhatti HN, Nasir AW, Hanif MA (2010) Desalination 253:78CrossRefGoogle Scholar
  70. 70.
    Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Comp Revs Food Sci Food Saf 9:55243Google Scholar
  71. 71.
    Siqueira G, Oksman K, Tadokoro SK, Mathew AP (2016) Compos Sci Technol 123:49CrossRefGoogle Scholar
  72. 72.
    Iahnkea AOES, Costa TMH, De Oliveira Rios A, Flôresa SH (2015) Ind Crops Prod 76:1071CrossRefGoogle Scholar
  73. 73.
    Alves JS, dos Reis KC, Menezes EGT, Pereira FV, Pereira J (2015) Carbohydr Polym 115:215CrossRefGoogle Scholar
  74. 74.
    Wadhwa M, Bakshi MPS (2013) Utilization of fruit and vegetable wastes as livestock feed and as substrates for generation of other value-added products. In: Makkar HPS (ed) RAP Publication 2013/04, FAO, p 30Google Scholar
  75. 75.
    FAO (2011) FAOSTAT. Food and Agriculture Organization of the United Nations. Available at
  76. 76.
    Tommonaro G, Poli A, De Rosa S, Nicolaus B (2008) Molecules 13(6):384CrossRefGoogle Scholar
  77. 77.
    Van Buren JP (1991) Function of pectin in plant tissue structure and firmness. In: The chemistry and technology of pectin. Academic Press, CaliforniaGoogle Scholar
  78. 78.
    Lopes da Silva JA, Rao MA (2006) Food polysaccharides and their applications, 2nd edn. Taylor & Francis, AbingdonGoogle Scholar
  79. 79.
    Anuradha K, Padma PN, Venkateshwar S, Reddy G (2010) Indian J Microbiol 50:339CrossRefGoogle Scholar
  80. 80.
  81. 81.
    Ciolacu L, Nicolau AI, Hoorfar J (2014) Global safety of fresh produce a handbook of best practice, Innovative Commercial Solutions and Case Studies. Woodhead Publishing Limited, SawstonGoogle Scholar
  82. 82.
  83. 83.
    Liu L, Liu C-K, Fishman ML, Hicks KB (2007) J Agric Food Chem 55(6):2349CrossRefGoogle Scholar
  84. 84.
    Grassino AN, Halambek J, Djaković S, Rimac Brnčić S, Dent M, Grabarić Z (2016) Food Hydrocoll 52:265CrossRefGoogle Scholar
  85. 85.
    Hayash T (1989) Annu Rev Plant Physiol Plant Mol Biol 40:139CrossRefGoogle Scholar
  86. 86.
    Rindlav-Westling A, Stading M, Gatenholm P (2002) Biomacromolecules 3:84CrossRefGoogle Scholar
  87. 87.
    Gidley MJ, Lillford PJ, Rowlands DW, Lang P, Dentini M, Crescenzi V, Edwards M, Fanutti C, Reid JSG (1991) Carbohydr Res 214:299CrossRefGoogle Scholar
  88. 88.
    Simi CK, Abraham TE (2010) Colloid Polym Sci 288:297CrossRefGoogle Scholar
  89. 89.
    Bergström EM, Salmén L, Kochumalayil J, Berglund L (2012) Carbohydr Polym 87:2532CrossRefGoogle Scholar
  90. 90.
    Min B, Lim J, Ko S, Lee KG, Lee SH, Lee S (2011) Bioresour Technol 102(4):3855CrossRefGoogle Scholar
  91. 91.
    Walia M, Sharma U, Bhushan S, Kumar N, Singh B (2013) Chem Nat Compd 49(5):794CrossRefGoogle Scholar
  92. 92.
    Nawirska A, Kwasniewska M (2005) Food Chem 91:221CrossRefGoogle Scholar
  93. 93.
    Ovodov YS (2009) Russ J Bioorg Chem 35:269CrossRefGoogle Scholar
  94. 94.
    Giovanetti MH, Nogueira A, de Oliveira CL, Wosiacki G (2012) Chromatography—the most versatile method of chemical analysis. InTech, RijekaGoogle Scholar
  95. 95.
    Bhushan S, Kalia K (2008) Crit Rev Biotechnol 181:1199Google Scholar
  96. 96.
    Teixeira EM, Da Róz AL (2007) Carbohydr Polym 69:619CrossRefGoogle Scholar
  97. 97.
    Rababah TM, Hettiarachchy NS, Horax R (2004) J Agric Food Chem 52:5183CrossRefGoogle Scholar
  98. 98.
    Gaikwad KK, Lee JY, Lee YS (2015) J Food Sci Technol. doi:10.1007/s13197-015-2104-9 Google Scholar
  99. 99.
    International Coffee Organization (2016) The current state of the global coffee trade. Accessed 29 Jan 2016
  100. 100.
    Franca AS, Oliveira LS (2009) Coffee processing solid wastes: current uses and future perspectives. In: Columbus F (ed) Agricultural wastes. Nova Publishers, New YorkGoogle Scholar
  101. 101.
    Sustainable America Blog, 6 ways the coffee industry is turning waste into a resource. 14 Oct 2014
  102. 102.
    Burrows B (2016) How coffee could ‘give a lift’ in another way. Recycling and Waste World. Accessed 26 Feb 2016
  103. 103.
    Rathinavelu R, Graziosi G (2015) Use of coffee wastes and by-products co-streams: a summary. Potential alternative use of coffee wastes and by-products. International Coffee Organization, pp 1–4 17 Aug 2005
  104. 104.
    Batista LR, Chalfoun SM, Silva CF, Cirillo M, Varga EA, Schwanc RF (2009) Food Control 20(9):784CrossRefGoogle Scholar
  105. 105.
    Gouvea BM, Torres C, Franca AS, Oliveira LS, Oliveira ES (2009) Feasibility of ethanol production from coffee husks. Biotechnol Lett 31:1315CrossRefGoogle Scholar
  106. 106.
    Bressani R (1979) Antiphysiological factors in coffee pulp. In: Braham JE, Bressani R (eds) Coffee pulp composition, technology and utilization. IDRC Publisher, pp 83–96Google Scholar
  107. 107.
    Roussos S, Gaime IP, Denis S (1998) Biotechnological management of coffee pulp. International Training Course on Solid State Fermentation. Document ORSTOM, Montpellier, France, pp 151–161. Available at
  108. 108.
    Bekalo SA, Reinhardt HW (2010) Mater Struct 43:1049CrossRefGoogle Scholar
  109. 109.
    Baek B-S, Park J-W, Lee B-H, Kim J-HJ (2013) Polym Environ 21:702–709CrossRefGoogle Scholar
  110. 110.
    Sathasivam K, Teoh A, Xavier R, Marimuthu K (2012) Mechanical properties, water resistance and biodegradability of esterified coffee dust/poly(vinyl alcohol) blend film. In: Souvenir of 2nd international science Congress, VrindavanGoogle Scholar
  111. 111.
    Hyun KT, Won LJ (2006) A process for producing activated carbon from coffee grounds. KR20060108345 (A)Google Scholar
  112. 112.
    Kanazawa K, Inomata K (2001) Activated carbon and method for producing the same. JP2001287905 (A)Google Scholar
  113. 113.
    Kuo N-W, Wu P-C (2003) Method for manufacturing activated carbon from coffee waste. US2003196954 (A1)Google Scholar
  114. 114.
    Glocal Statistical Review 2014–2015 (2015) INC International Nut & Dried Fruit.,
  115. 115.
    Zaaba NF, Ismail H, Jaafar M (2014) Bioresources 9(2):2128CrossRefGoogle Scholar
  116. 116.
    Raju GU, Kumarappa S, Gaitonde VN (2012) J Mater Environ Sci 3(5):907Google Scholar
  117. 117.
    Tatli E (2013) Pretreatment of peanut shells for co-production of glucose and concrete admixture. A Master Thesis. Middle East Technical University, p 1–89Google Scholar
  118. 118.
    Obasi HC (2015) J Polym 2015(189289):1CrossRefGoogle Scholar
  119. 119.
    Meeker DL, Hamilton CR (2006) An overview of the rendering industry. In: Meeker DL (ed) Essential rendering: all about the animal by-products industry. National Renderers Association, Arlington, VA, pp 1–314. Available at
  120. 120.
    Bisplinghoff FD (2006) A history of North American rendering. In: Meeker DL (eds) Essential rendering: all about the animal by-products industry,pp 17Google Scholar
  121. 121.
    European Commission Executive summary, Slaughterhouses and Animal By-products Industries: Best Available Techniques in the Slaughterhouses and Animal By-products Industries, May 2005Google Scholar
  122. 122.
    Guidance (2014) Animal by-products: collection, storage and disposal. Department for Environment, Food & Rural Affairs. Accessed 10 April 2014
  123. 123.
    Jayathilakan K, Sultana K, Radhakrishna K, Bawa AS (2012) J Food Sci Technol 49(3):278CrossRefGoogle Scholar
  124. 124.
    Hamilton (2002) Protein sources for the animal feed industry. FAO Animal production and health. Expert Consultation and Workshop, BangkokGoogle Scholar
  125. 125.
  126. 126.
    Bolarinwa OA, Olukosi OA, Adeola O (2012) Can J Anim Sci 92:73CrossRefGoogle Scholar
  127. 127.
    Garcia RA, Rosentrater KA, Flores RA (2006) Appl Eng Agric 22:729–736CrossRefGoogle Scholar
  128. 128.
    Lee J-H, Won M, Song KB (2015) LWT Food Sci Technol 63(1):700CrossRefGoogle Scholar
  129. 129.
    Nzioki BM (2010) Biodegradable polymer blends and composites from proteins produced by animal co-product. All theses. Paper 817, Clemson University, TigerPrintsGoogle Scholar
  130. 130.
    Vatansever F, Nzioki B, Sharma S, Luzinov I (2011) Biodegradable plastics from meat and bone meal (Conference Paper), 241st ACS National Meeting and Exposition, AnaheimGoogle Scholar
  131. 131.
    Srubar WV, Billington SL (2013) PHBV/Ground bone meal and pumice powder engineered biobased composite materials for construction. US8507588 (B2)Google Scholar
  132. 132.
    Lukubira S, Ogale A (2014) J Appl Polym Sci 131(41145):1Google Scholar
  133. 133.
    Gómez-Guillén MC, Pérez-Mateos M, Gómez-Estaca J, López-Caballero E, Giménez B, Montero P (2009) Fish gelatin: a renewable material for the development of active biodegradable films. Trends Food Sci Technol 20:3CrossRefGoogle Scholar
  134. 134.
    Haug IJ, Draget KI (2009) Handbook of hydrocolloids. Woodhead Publishing Limited, CambridgeGoogle Scholar
  135. 135.
    FAO (2013) Fisheries and aquaculture information and statistics branch. The State of World Fisheries and Aquaculture, Rome, p 2014Google Scholar
  136. 136.
    GME Market data Official website of GME (2007) Gelatin manufacturers of Europe GME Market Data, Brussels. Accessed 6 June 2016
  137. 137.
  138. 138.
    Jones GMJ (2004) Rheological properties of gelatin, carrageenan and locust bean gum mixtures. Ph.D. thesis, University of NottinghamGoogle Scholar
  139. 139.
    Gómez-Guillén MC, Giménez B, López-Caballero MA, Montero MP (2011) Food Hydrocoll 25:1813CrossRefGoogle Scholar
  140. 140.
    De Almeida PF, Lannes SCDS (2013) J Food Process Eng 36:824CrossRefGoogle Scholar
  141. 141.
    Yang H, Wang Y (2009) Food Hydrocoll 23:577CrossRefGoogle Scholar
  142. 142.
    Guilbert S (1986) Technology and application of edible protective films. In: Mathlouthi M (ed) Food packaging and preservation. Elsevier Applied Science, London, pp 371–394Google Scholar
  143. 143.
    Wittaya T (2012) Chapter 3: protein-based edible films: characteristics and improvement of properties. In: Eissa AA (ed) Agricultural and biological sciences: structure and function of food engineering. InTech. doi:10.5772/48167
  144. 144.
    GMIA, Gelatin Handbook (2012) Gelatin Manufacturers Institute of America, pp 1–25.
  145. 145.
    Gorman J (2002) Materials take wing: what to do with 4 billion pounds of feathers? Sci News 161(8):120CrossRefGoogle Scholar
  146. 146.
    Schrooyen PMM, Dijkstra PJ, Oberthur RC, Bantjes A, Feijen J (2001) J Agric Food Chem 49:221CrossRefGoogle Scholar
  147. 147.
    Gillespie JM (1990) The proteins of hair and other hard α-keratins. In: Goldman RA, Steinert PM (eds) Cellular and molecular biology of intermediate filaments. Plenum Press, New York, p 95CrossRefGoogle Scholar
  148. 148.
    Fujii T, Li D (2008) J Biol Macromol 8(2):48Google Scholar
  149. 149.
    Molloy PL, Powell BC, Gregg K, Barone ED, Rogers GE (1982) Nucleic Acid Res 10:6007CrossRefGoogle Scholar
  150. 150.
    Fraser RDB, MacRae TP, Rogers GE (1972) Keratins: their composition, structure, and biosynthesis. Charles C. Thomas, SpringfieldGoogle Scholar
  151. 151.
    Gupta A, Kamarudin NB, Kee CYG, Yunus RBM (2012) J Chem Chem Eng 6:732Google Scholar
  152. 152.
    Bragulla HH, Homberger DG (2009) J Anat 214:516CrossRefGoogle Scholar
  153. 153.
    Nakamura A, Arimoto M, Takeuchi K, Fujii T (2002) Biol Pharm Bull 25:569CrossRefGoogle Scholar
  154. 154.
    Yin X-C, Li F-Y, He Y-F, Wang Y, Wang R-M (2013) Biomater Sci 1:528CrossRefGoogle Scholar
  155. 155.
    Wang Y-X, Cao X-J (2012) Process Biochem 47:896CrossRefGoogle Scholar
  156. 156.
    De Almeida PF, de Araújo MGO, Santana JCC (2012) Acta Sci Technol 34:345CrossRefGoogle Scholar
  157. 157.
    Liu DC, Lin YK, Chen MT (2001) Asian Australas J Anim Sci 14:1638CrossRefGoogle Scholar
  158. 158.
    Lee J-H, Lee J, Song KB (2015) Food Hydrocoll 46:208CrossRefGoogle Scholar
  159. 159.
    Cordeiro CM, Hincke MT (2011) Recent Pat Food Nutr Agric 3:1CrossRefGoogle Scholar
  160. 160.
    Stadelman WJ (2000) Eggs and egg products, 2nd edn. Wiley, New YorkGoogle Scholar
  161. 161.
    Verma N, Kumar V, Bansal MC (2012) Pol J Environ Stud 21:491Google Scholar
  162. 162.
    Burley RW, Vadehra DV (1989) The egg shell and shell membranes: properties and synthesis. The avian egg, chemistry and biology. Wiley, New YorkGoogle Scholar
  163. 163.
    Hincke MT, Nys Y, Gautron J (2010) J Poult Sci 47:208CrossRefGoogle Scholar
  164. 164.
    Nys Y, Gautron J, Garcia-Ruiz JM, Hincke MT (2004) Comptes Rendus Paleovol 3(6):549CrossRefGoogle Scholar
  165. 165.
    CNN Tech. Scientists hatch plan to recycle eggshells into plastics. 3 April 2012Google Scholar
  166. 166.
    Arias JL, Quijada R, Toro P, Yazdani-Pedram M (2008) US7459492Google Scholar
  167. 167.
    Toro P, Quijada R, Yazdani-Pedram M, Arias JL (2007) Mater Lett 61:4347CrossRefGoogle Scholar
  168. 168.
    Toro P, Quijada R, Arias JL, Pedram-Yazdani M (2007) Macromol Mater Eng 292:1027CrossRefGoogle Scholar
  169. 169.
    Iyer KA, Torkelson JM (2014) Compos Sci Technol 102:152CrossRefGoogle Scholar
  170. 170.
    Prabhakar MN, Shah AUR, Song JI (2015) Fabrication and characterization of eggshell powder particles fused wheat protein isolate green composite for packaging applications. Polym Compos. doi:10.1002/pc.23527 Google Scholar
  171. 171.
    Su O, Xi T, Li Y, Xiong L (2014) PLoS ONE 9:e106727CrossRefGoogle Scholar
  172. 172.
    Olsen EM, Serbezov D, Vøllestad LA (2014) Ecol Evol 4(9):1601CrossRefGoogle Scholar
  173. 173.
    Gómez-Guillén MC, Turnay J, Fernandez-Diaz MD, Ulmo N, Lizarbe MA, Montero P (2002) J Food Hydrocoll 16:25CrossRefGoogle Scholar
  174. 174.
    Shahidi F (1994) Seafood processing by-products. In: Shahidi F, Botta JR (eds) Seafoods chemistry, processing, technology and quality. Blackie Academic and Professional, Glasgow, pp 320–334CrossRefGoogle Scholar
  175. 175.
    Ghaedian R, Coupland JN, Decker EA, McClemets DJ (1998) J Food Eng 35:323CrossRefGoogle Scholar
  176. 176.
    Ghaly AE, Ramakrishnan VV, Brooks MS, Budge SM, Dave D (2013) J. Microb Biochem Technol 5(4):107Google Scholar
  177. 177.
    Muyonga JH, Cole CGB, Duodu KG (2004) Food Chem 85(1):81CrossRefGoogle Scholar
  178. 178.
    Wasswa J, Tang J, Gu X (2007) Food Rev Int 23:159CrossRefGoogle Scholar
  179. 179.
    Gómez-Estaca J, Montero P, Fernández-Martín F, Gómez-Guillén MC (2009) J Food Eng 90(4):480CrossRefGoogle Scholar
  180. 180.
    Thomazine M, Carvalho RA, Sobral PIA (2005) J Food Sci 70(3):172CrossRefGoogle Scholar
  181. 181.
    Carvalho RA, Sobral PJA, Thomazine M, Habitante AMQB, Giménez B, Gómez-Guillén MC, Montero P (2008) Food Hydrocoll 22(6):1117CrossRefGoogle Scholar
  182. 182.
    Arvanitoyannis IS, Nakayama A, Aiba S (1998) Carbohydr Polym 37(4):371CrossRefGoogle Scholar
  183. 183.
    Farris S, Schaich KM, Liu L, Piergiovanni L, Yam KL (2009) Trends Food Sci Technol 20(8):316CrossRefGoogle Scholar
  184. 184.
    Bigi A, Cojazzi G, Panzavolta S, Rubini K, Roveri N (2001) Biomaterials 22(8):763CrossRefGoogle Scholar
  185. 185.
    Gómez-Guillén MC, Montero P (2001) J Food Sci 66:213CrossRefGoogle Scholar
  186. 186.
    Tongnuanchan P, Benjakul S, Prodpran T (2012) Food Chem 134:1571CrossRefGoogle Scholar
  187. 187.
    Kim SK, Mendis E (2005) Food Res Int 39:383CrossRefGoogle Scholar
  188. 188.
    Prashanth KVH, Tharanathan RN (2007) Trends Food Sci Technol 18(3):117CrossRefGoogle Scholar
  189. 189.
    Hayes M, Carney B, Slater J, Brück W (2008) Biotechnol J 3(7):878. doi:10.1002/biot.200800027 CrossRefGoogle Scholar
  190. 190.
    Aider M (2010) LWT Food Sci Technol 43:837CrossRefGoogle Scholar
  191. 191.
    Vartiainen J, Motion R, Kulonen H, Rättö M, Skyttä E, Ahvenainen R (2004) J Appl Polym Sci 94:986CrossRefGoogle Scholar
  192. 192.
    Irshad A, Sharma BD (2015) J Anim Prod Adv 5:681Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sanna Virtanen
    • 1
  • Ravindra Reddy Chowreddy
    • 2
  • Sibel Irmak
    • 3
  • Kaisu Honkapää
    • 4
  • Loren Isom
    • 5
  1. 1.Department of Fibres and Biobased MaterialsVTT Technical Research Centre of Finland LtdTampereFinland
  2. 2.Norner Research ASStathelleNorway
  3. 3.Biological Systems Engineering, 218 L.W. Chase HallUniversity of Nebraska LincolnLincolnUSA
  4. 4.Food BioprocessingVTT Technical Research Centre of Finland LtdEspooFinland
  5. 5.Industrial Agricultural Products CenterUniversity of Nebraska LincolnLincolnUSA

Personalised recommendations